Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stingless bees have their nests protected by soldiers

24.02.2017

Attacks by robber bees result in the evolution of larger guard bees and thus promote the division of labor in the hive

Although stingless bees do not have a sting to fend off enemies, they are nonetheless able to defend their hives against attacks. Only four years ago it was discovered that a Brazilian bee species, the Jatai bee, has a soldier caste. The slightly larger fighters guard the entrance to the nest and grip intruders with their powerful mandibles in the event of an attack.


Guardian bees of the species Scaptotrigona depilis at the entrance to their hive

photo/©: Christoph Grüter

Working in collaboration with Brazilian researchers at the University of São Paulo and Embrapa in Belém, biologists at Johannes Gutenberg University Mainz (JGU) managed to identify four further species which produce a special soldier caste to defend their nests.

"This is therefore not a solitary case, as it seems there is an astounding variety of social organization among other stingless honey bees," said Dr. Christoph Grüter of Mainz University. The scientists had examined a total of 28 different species from entirely different habitats in Brazil.

There are more than 500 species of stingless honey bees worldwide, 400 of them in Brazil alone. They form highly social societies with a queen and collect pollen in the same way as European honeybees. Many of the stingless bee species, however, are helplessly exposed to attacks by robbers. These robber bees, which also belong to the stingless bees, have given up foraging for pollen or nectar themselves.

Instead, they invade the nests of other bees and steal their honey and pollen, even wax and brood food. In 2012, however, Dr. Christoph Grüter and his colleagues discovered for the first time that parasitic robbers encounter difficulties when they assault a Jatai bee (Tetragonisca angustula) colony. The nest entrance is protected by guard bees which are larger than the hive’s other worker bees.

"Meanwhile we have established that the hive guards of a number of species out of the total of 28 we examined are larger than other worker bees. These soldiers are between 10 to 30 percent larger than the pollen foragers of the same colony," explained Grüter, adding that larger guards are better fighters.

Evolutionary biologists found large guard bees mainly in species that are subject to frequent attacks. The authors postulate that attacks by robbers are the driving force behind the evolution of a special caste among the worker bees and therefore represent the factor that has resulted in this more marked division of labor. "We were able to clearly link the activity of robber bees to the evolution of these soldiers," clarified Grüter. Analyses showed that such a differentiation among worker bees has occurred at least five times in the last 25 million years hand in hand with the appearance of parasitic robber bees.

Based on their findings, the team of researchers from Mainz and Brazil were able to publish a further new discovery. To date, it has been assumed that the division of labor among bees is determined primarily by age. Young bees take care of cleaning the nest and feeding the larvae. As they get older they move closer to the nest exit, from where they depart on foraging expeditions in search of food. It is a different matter with soldier bees. They are larger than their nest comrades from the moment they hatch, which means the division of labor in a hive is not dictated solely by the age of the insects but also by their morphology.

Photos:
http://www.uni-mainz.de/bilder_presse/10_zoologie_bienen_soldatinnen_01.jpg
Guardian bees of the species Scaptotrigona depilis at the entrance to their hive
photo/©: Christoph Grüter

http://www.uni-mainz.de/bilder_presse/10_zoologie_bienen_soldatinnen_02.jpg
Soldier bees of the species Tetragonisca angustula defending the entrance to their hive photo/©: Christoph Grüter

http://www.uni-mainz.de/bilder_presse/10_zoologie_bienen_soldatinnen_03.jpg
A soldier bee of the species Tetragonisca angustula (bottom) next to a forager from the same hive. The photo was taken shortly after hatching, which is why the bees are still without pigmentation.
photo/©: Christoph Grüter

Publication:
Christoph Grüter et al.
Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees
Nature Communications, 23 February 2017
DOI: 10.1038/s41467-016-0012-y

Further information:
Dr. Christoph Grüter
Behavioral Ecology and Social Evolution Group
Institute of Organismic and Molecular Evolutionary Biology
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-27843
fax +49 6131 39-27850
e-mail: cgrueter@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/513_ENG_HTML.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>