Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start codons in DNA may be more numerous than previously thought

21.02.2017

For decades, scientists working with genetic material have labored with a few basic rules in mind. To start, DNA is transcribed into messenger RNA (mRNA), and mRNA is translated into proteins, which are essential for almost all biological functions. The central principle regarding that translation has long held that only a small number of three-letter sequences in mRNA, known as start codons, could trigger the production of proteins. But researchers might need to revisit and possibly rewrite this rule, after recent measurements from a team including scientists from the National Institute of Standards and Technology (NIST).

The findings, to be published on February 21, 2017, in the journal Nucleic Acids Research by scientists in a research collaboration between NIST and Stanford University, demonstrate that there are at least 47 possible start codons, each of which can instruct a cell to begin protein synthesis. It was previously thought that only seven of the 64 possible triplet codons trigger protein synthesis.


Image of an agar plate streaked with 16 different strains of Escherichia coli, each containing a green fluorescent protein with a different start codon (annotated along the edge of the plate). The 16 codons correspond to the 16 strongest expressing codons. Image is a composite of two super-imposed images from a laser scanner.

Credit: Jeff Glasgow/Ariel Hecht/Kelly Irvine/NIST

"It could be that many potential start codons had remained undiscovered because no one could see them," said lead author Ariel Hecht, a team member at the Joint Initiative for Metrology in Biology, a research collaboration that includes NIST and Stanford.

Scientists made many of their initial discoveries about DNA and RNA, including start codons, in the 1950s and 1960s. Those ideas have since become enshrined in textbooks around the globe as the modern understanding of the rules of molecular biology.

Genetic code is typically represented via sequences of four letters--A, C, G, and T or U--which correspond to the molecular units known as adenine, cytosine, guanine and thymine (for DNA code) or uracil (for RNA code). Fifty years ago, the best available research tools indicated that there were only a few start codons (with sequences of AUG, GUG and UUG) in most living things. Start codons are important to understand because they mark the beginning of a recipe for translating RNA into specific strings of amino acids (i.e., proteins).

The JIMB team's realization that there might be something amiss in the general understanding of how codons perform began unexpectedly over a round of bagels and coffee. Hecht and his colleagues Jeff Glasgow, Lukmaan Bawazer and Matt Munson were discussing colleague Paul Jaschke's unsuccessful attempt to refactor a virus, phiX174. Refactoring is a kind of re-coding or rearranging used to study genomes and to identify essential genes. phiX174 can be used to infect E. coli cells as a part of such studies.

Jaschke had replaced the start codons of several genes with codons that should not have started translation (AUA and ACG). However, to Jaschke's surprise, he was still detecting the expression of those genes that should have been silenced due to removal.

Hecht pondered what seemed like a rather naïve question: Was Jaschke's experimental result actually wrong? What if the results indicated that codons didn't fit a traditional description of start or not, but instead had varying likelihoods to initiate start translation? To the best of their knowledge, no one had ever systematically explored whether translation could be initiated from all 64 codons. No one had ever proved that you cannot start translation from any codon.

"We kind of all collectively asked ourselves: had anyone ever looked?" said Hecht. A further review of available literature on the topic indicated that the answer was no.

Unlike geneticists working a half-century ago, the JIMB team and others who peer into the inner workings of cells now have far more powerful tools at their disposal, including green fluorescent protein (GFP), a protein adapted from jellyfish, and nanoluciferase, another protein adapted from a deep sea shrimp. Both GFP and nanoluciferase emit light when expressed inside cells and have been optimized within the past decade to produce very strong signals that can be used to probe the cells in depth.

"Ten years ago the tools to make this kind of measurement didn't exist," Hecht said.

NIST specializes in the process of precision measurement, and the start codon challenge proved irresistible to the JIMB team. The collaboration was formed in 2016 with the goal of advancing biomeasurement science and facilitating the process of discovery by bringing together experts from academia, government labs and industry for collective scientific investigations.

With the use of GFP and nanoluciferase, the team measured translation initiation in the bacteria E. coli from all 64 codons. They were able to detect initiation of protein synthesis from 47 codons.

The implications of the work could be quite profound for our understanding of biology.

"We want to know everything going on inside cells so that we can fully understand life at a molecular scale and have a better chance of partnering with biology to flourish together," said Stanford professor and JIMB colleague and advisor, Drew Endy. "We thought we knew the rules, but it turns out there's a whole other level we need to learn about. The grammar of DNA might be even more sophisticated than we imagined."

Still, the JIMB team cautions, this paper is really just the first step, and it is unclear what studies of other organisms will reveal.

"We need to be very careful about extrapolating from these findings or applying them to other organisms without further, deeper research," said Hecht. He hopes that this paper will encourage or inspire other researchers to explore the topic to find even more answers.

"It could be that all codons could be start codons," Hecht said. "I think it is just a matter of being able to measure them at the right level."

Media Contact

Alison Gillespie
Alison.Gillespie@nist.gov
301-975-2316

 @usnistgov

http://www.nist.gov 

Alison Gillespie | EurekAlert!

Further reports about: DNA DNA code E coli NIST RNA amino acids fluorescent protein mRNA protein synthesis proteins sequences

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>