Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start codons in DNA may be more numerous than previously thought

21.02.2017

For decades, scientists working with genetic material have labored with a few basic rules in mind. To start, DNA is transcribed into messenger RNA (mRNA), and mRNA is translated into proteins, which are essential for almost all biological functions. The central principle regarding that translation has long held that only a small number of three-letter sequences in mRNA, known as start codons, could trigger the production of proteins. But researchers might need to revisit and possibly rewrite this rule, after recent measurements from a team including scientists from the National Institute of Standards and Technology (NIST).

The findings, to be published on February 21, 2017, in the journal Nucleic Acids Research by scientists in a research collaboration between NIST and Stanford University, demonstrate that there are at least 47 possible start codons, each of which can instruct a cell to begin protein synthesis. It was previously thought that only seven of the 64 possible triplet codons trigger protein synthesis.


Image of an agar plate streaked with 16 different strains of Escherichia coli, each containing a green fluorescent protein with a different start codon (annotated along the edge of the plate). The 16 codons correspond to the 16 strongest expressing codons. Image is a composite of two super-imposed images from a laser scanner.

Credit: Jeff Glasgow/Ariel Hecht/Kelly Irvine/NIST

"It could be that many potential start codons had remained undiscovered because no one could see them," said lead author Ariel Hecht, a team member at the Joint Initiative for Metrology in Biology, a research collaboration that includes NIST and Stanford.

Scientists made many of their initial discoveries about DNA and RNA, including start codons, in the 1950s and 1960s. Those ideas have since become enshrined in textbooks around the globe as the modern understanding of the rules of molecular biology.

Genetic code is typically represented via sequences of four letters--A, C, G, and T or U--which correspond to the molecular units known as adenine, cytosine, guanine and thymine (for DNA code) or uracil (for RNA code). Fifty years ago, the best available research tools indicated that there were only a few start codons (with sequences of AUG, GUG and UUG) in most living things. Start codons are important to understand because they mark the beginning of a recipe for translating RNA into specific strings of amino acids (i.e., proteins).

The JIMB team's realization that there might be something amiss in the general understanding of how codons perform began unexpectedly over a round of bagels and coffee. Hecht and his colleagues Jeff Glasgow, Lukmaan Bawazer and Matt Munson were discussing colleague Paul Jaschke's unsuccessful attempt to refactor a virus, phiX174. Refactoring is a kind of re-coding or rearranging used to study genomes and to identify essential genes. phiX174 can be used to infect E. coli cells as a part of such studies.

Jaschke had replaced the start codons of several genes with codons that should not have started translation (AUA and ACG). However, to Jaschke's surprise, he was still detecting the expression of those genes that should have been silenced due to removal.

Hecht pondered what seemed like a rather naïve question: Was Jaschke's experimental result actually wrong? What if the results indicated that codons didn't fit a traditional description of start or not, but instead had varying likelihoods to initiate start translation? To the best of their knowledge, no one had ever systematically explored whether translation could be initiated from all 64 codons. No one had ever proved that you cannot start translation from any codon.

"We kind of all collectively asked ourselves: had anyone ever looked?" said Hecht. A further review of available literature on the topic indicated that the answer was no.

Unlike geneticists working a half-century ago, the JIMB team and others who peer into the inner workings of cells now have far more powerful tools at their disposal, including green fluorescent protein (GFP), a protein adapted from jellyfish, and nanoluciferase, another protein adapted from a deep sea shrimp. Both GFP and nanoluciferase emit light when expressed inside cells and have been optimized within the past decade to produce very strong signals that can be used to probe the cells in depth.

"Ten years ago the tools to make this kind of measurement didn't exist," Hecht said.

NIST specializes in the process of precision measurement, and the start codon challenge proved irresistible to the JIMB team. The collaboration was formed in 2016 with the goal of advancing biomeasurement science and facilitating the process of discovery by bringing together experts from academia, government labs and industry for collective scientific investigations.

With the use of GFP and nanoluciferase, the team measured translation initiation in the bacteria E. coli from all 64 codons. They were able to detect initiation of protein synthesis from 47 codons.

The implications of the work could be quite profound for our understanding of biology.

"We want to know everything going on inside cells so that we can fully understand life at a molecular scale and have a better chance of partnering with biology to flourish together," said Stanford professor and JIMB colleague and advisor, Drew Endy. "We thought we knew the rules, but it turns out there's a whole other level we need to learn about. The grammar of DNA might be even more sophisticated than we imagined."

Still, the JIMB team cautions, this paper is really just the first step, and it is unclear what studies of other organisms will reveal.

"We need to be very careful about extrapolating from these findings or applying them to other organisms without further, deeper research," said Hecht. He hopes that this paper will encourage or inspire other researchers to explore the topic to find even more answers.

"It could be that all codons could be start codons," Hecht said. "I think it is just a matter of being able to measure them at the right level."

Media Contact

Alison Gillespie
Alison.Gillespie@nist.gov
301-975-2316

 @usnistgov

http://www.nist.gov 

Alison Gillespie | EurekAlert!

Further reports about: DNA DNA code E coli NIST RNA amino acids fluorescent protein mRNA protein synthesis proteins sequences

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>