Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinning Drops of Blood

28.03.2014

Better diagnosis of parasitic infections: rapid, simple enrichment of rare cells by using ultrasound

Parasitic infections like malaria and sleeping sickness affect hundreds of millions of people, primarily in the poorest regions of the world. Diagnosis of these diseases is often difficult because the concentration of parasites in the blood can be very low.


British scientists have now developed a simple chip-based method for enriching rare cells in blood samples. As they report in the journal Angewandte Chemie, this allows the detection limit for the parasites that cause malaria and sleeping sickness to be lowered by two to three orders of magnitude.

Existing techniques for the separation and enrichment of parasites in blood samples are difficult to use in isolated regions and developing countries because they usually require complex chemistry for labeling cells, costly instruments, or extensive infrastructure. An inexpensive technique that requires only small amounts of power, works without labeling the cells, and uses just a drop of blood from a fingertip, is needed.

A team headed by Jonathan M. Cooper at the University of Glasgow has now developed such an approach. Their innovative method is based on an acoustically controlled microchip that is used in a battery-driven, hand-held device. The researchers successfully used their technique to enrich malaria-infected blood cells and the parasite that causes sleeping sickness in blood samples.

The chip contains a special electrode that produces ultrasound when a voltage is applied. If a drop of liquid is placed in a specific location on the device, the form of the acoustic field elicits a particular pattern of flow within the drop: a circular rotational motion.

Particles whose density is lower than that of the liquid are carried against gravity with the upward rising current and transported toward the outer edge of the drop, where they accumulate. In contrast, particles with a higher density collect in the center of the droplet, because they cannot be lifted up.

This works for cells too. Red blood cells infected with the malaria parasite are less dense than non-infected cells. If the density of the drop of blood being examined is adjusted by simply adding a small amount of reagent, the acoustic chip allows the infected red blood cells to be concentrated by a factor of one hundred to one thousand at the outer edge of the blood drop.

The non-infected red blood cells remain at the center of the drop. The method is also suitable for concentrating free-swimming parasites in blood. The researchers were able to enrich trypanosomes, the pathogens that cause sleeping sickness, by using their acoustic chip. Simple staining techniques then make it possible to detect the parasites.

In the future, the technique may be adapted to allow other infectious diseases and rare circulating tumor cells to be detected more readily use of this new technology.

About the Author

Professor Jon Cooper is a Fellow of the Royal Academy of Engineering and holds the Wolfson Chair in Bioengineering at the University of Glasgow. His academic interests include the use of micro- and nanotechnologies for the development of medical diagnostics.

Author: Jonathan M. Cooper, University of Glasgow (UK), http://www.gla.ac.uk/schools/engineering/staff/jonathancooper/

Title: Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201310401

Jonathan M. Cooper | Angewandte Chemie International Edition

Further reports about: acoustic blood diseases infected parasite parasites regions sickness sleeping techniques

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>