Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinning Drops of Blood

28.03.2014

Better diagnosis of parasitic infections: rapid, simple enrichment of rare cells by using ultrasound

Parasitic infections like malaria and sleeping sickness affect hundreds of millions of people, primarily in the poorest regions of the world. Diagnosis of these diseases is often difficult because the concentration of parasites in the blood can be very low.


British scientists have now developed a simple chip-based method for enriching rare cells in blood samples. As they report in the journal Angewandte Chemie, this allows the detection limit for the parasites that cause malaria and sleeping sickness to be lowered by two to three orders of magnitude.

Existing techniques for the separation and enrichment of parasites in blood samples are difficult to use in isolated regions and developing countries because they usually require complex chemistry for labeling cells, costly instruments, or extensive infrastructure. An inexpensive technique that requires only small amounts of power, works without labeling the cells, and uses just a drop of blood from a fingertip, is needed.

A team headed by Jonathan M. Cooper at the University of Glasgow has now developed such an approach. Their innovative method is based on an acoustically controlled microchip that is used in a battery-driven, hand-held device. The researchers successfully used their technique to enrich malaria-infected blood cells and the parasite that causes sleeping sickness in blood samples.

The chip contains a special electrode that produces ultrasound when a voltage is applied. If a drop of liquid is placed in a specific location on the device, the form of the acoustic field elicits a particular pattern of flow within the drop: a circular rotational motion.

Particles whose density is lower than that of the liquid are carried against gravity with the upward rising current and transported toward the outer edge of the drop, where they accumulate. In contrast, particles with a higher density collect in the center of the droplet, because they cannot be lifted up.

This works for cells too. Red blood cells infected with the malaria parasite are less dense than non-infected cells. If the density of the drop of blood being examined is adjusted by simply adding a small amount of reagent, the acoustic chip allows the infected red blood cells to be concentrated by a factor of one hundred to one thousand at the outer edge of the blood drop.

The non-infected red blood cells remain at the center of the drop. The method is also suitable for concentrating free-swimming parasites in blood. The researchers were able to enrich trypanosomes, the pathogens that cause sleeping sickness, by using their acoustic chip. Simple staining techniques then make it possible to detect the parasites.

In the future, the technique may be adapted to allow other infectious diseases and rare circulating tumor cells to be detected more readily use of this new technology.

About the Author

Professor Jon Cooper is a Fellow of the Royal Academy of Engineering and holds the Wolfson Chair in Bioengineering at the University of Glasgow. His academic interests include the use of micro- and nanotechnologies for the development of medical diagnostics.

Author: Jonathan M. Cooper, University of Glasgow (UK), http://www.gla.ac.uk/schools/engineering/staff/jonathancooper/

Title: Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201310401

Jonathan M. Cooper | Angewandte Chemie International Edition

Further reports about: acoustic blood diseases infected parasite parasites regions sickness sleeping techniques

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>