Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species diversity protects the climate

07.04.2015

Plants remove carbon dioxide from the air and incorporate it into plant biomass. A portion of this “fixed” carbon can be stored longer term in the soil through root systems and decomposition after plant death. A study of the Max Planck Institute for Biogeochemistry has demonstrated now for the first time how the biological diversity of plants increases this carbon storage. Species diversity not only boosts the formation of plant biomass but also increases the activity and genetic diversity of soil microorganisms, which increasingly transform plant carbon into soil organic matter. Carbon is thus bound for longer and sustainably removed from the atmosphere where it acts as greenhouse gas.

The richness of species in an ecosystem is not only a source of joy for nature lovers; it also defines an ecosystem’s functional characteristics and potentially maintains stability with climatic change.


On the left: positive impact of plant diversity on microbial carbon storage, on the right: experimental field site of long-term study 'The Jena Experiment'

Graphics: Markus Lange & Lisa Geesink, Picture author: Alexandra Weigelt ©MPI-BGC

For example, ecosystems dominated by plants play a central role in the global carbon cycle: through photosynthesis, grasses, trees, and other plants transform atmospheric carbon dioxide into plant biomass. The carbon they bind in this way then reaches the soil as organic matter via plant litter and root exudates and can be stored there.

The fact that extensive plant diversity promotes the storage of carbon in the soil has already been demonstrated by previous studies; however, the exact mechanism behind this process was not known up to now.

An international research team headed by Gerd Gleixner and Markus Lange both scientists at the Max Planck Institute for Biogeochemistry in Jena, investigated why ecosystems with extensive species diversity bind more carbon than others with fewer species.

To do so they used the test plots of the Jena Experiment, a long-term project being carried out jointly by the Max Planck researchers and the Friedrich Schiller University Jena to examine the influence of biodiversity on elemental fluxes in nature. The research team compared grasslands of different species composition which had been exposed to the same environmental conditions for a nine-year period.

The scientists observed that, unlike their species-poor counterparts, species-rich grasslands provide the soil microorganisms with more nutrients and substances, and at the same time offer more favorable environmental conditions. “These factors led to greater genetic diversity and, in particular, to increased activity on the part of the microbial community,” says Markus Lange, first author of the study.

A high level of biodiversity appears to alter the metabolism of the microorganisms
Unexpectedly, the increased microbial activity did not result in the loss of carbon-rich matter in the soil as decomposition did not appear to increase. On the contrary, the microbial community added more carbon to the soil because it converted more plant biomass.

“In the presence of greater biodiversity, the microorganisms’ metabolism appears to have shifted towards anabolic activity,” says Lange, explaining the study findings. Moreover, as demonstrated by the age determination of the carbon molecules in the soil based on natural isotopes and carbon flow modelling, this “microbial” carbon is stored in the soil for longer.

The study thus demonstrates, for the first time, that a high level of plant diversity results in the long-term storage of carbon in the soil because it gives rise to a more varied composition and greater activity on the part of the microbial community.

From a global perspective, plant-rich ecosystems are particularly important for storing atmospheric carbon dioxide which would otherwise as greenhouse gas increase the warming of the Earth. How-ever, biodiversity is constantly being reduced through the impacts of climate change and increasing land use, and has reached a stage of global decline and species loss.

“Once again, our findings high-light the importance of biodiversity for important ecosystem functions like carbon storage,” says Gerd Gleixner. “The conservation of a high level of biodiversity ultimately sustainably counteracts the increasing accumulation of the greenhouse gas carbon dioxide in the atmosphere and hence climate change as well.”

The study of the Max Planck Institute for Biogeochemistry in Jena was published on April 7, 2015 in Nature Communications. The international research team was completed by Prof. Nico Eisenhauer (German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig), Prof. Robert I. Griffith (Centre for Ecology & Hydrology, Wallingford,UK) as well as scientists from the Georg August University Göttingen, the Humboldt University Berlin, the Friedrich Schiller University Jena, and the Centre national de la recherche scientifique (CNRS), Montferrier-sur-Lez, France. (ml, ef)

Original publication
Plant diversity increases soil microbial activity and soil carbon storage
Markus Lange, Nico Eisenhauer, Carlos A. Sierra, Holger Bessler, Christoph Engels, Robert I. Griffiths, Perla G. Mellado-Vázquez, Ashish Malik, Jacques Roy, Stefan Scheu, Sibylle Steinbeiss, Bruce C. Thomson, Susan E. Trumbore, Gerd Gleixner. Nature Communications. DOI: 10.1038/ncomms7707

Contact:
apl. Prof. Dr. Gerd Gleixner
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576172
Email: gerd.gleixner@bgc-jena.mpg.de

Dr. Markus Lange
Dpt. Biogeochemical Processes
MPI for Biogeochemistry
07745 Jena, Germany
Phone: + 49 (0)3641-576168
Email: mlange@bgc-jena.mpg.de

Weitere Informationen:

https://www.bgc-jena.mpg.de/bgp/pmwiki.php/Main/HomePage Home page of the research group

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>