Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving a case of intercellular entrapment

09.01.2015

UCSB's Reich Group uses lasers to spatially and temporally control the release of a tagged protein inside a cell

Optogenetics, which uses light to control cellular events, is poised to become an important technology in molecular biology and beyond. The Reich Group in UC Santa Barbara's Department of Chemistry and Biochemistry has made a major contribution to this emergent field by developing a light-activated nanocarrier that transports proteins into cells and releases them on command. The findings appear in the journal Molecular Pharmaceutics.


A hollow gold nanoshell with a modular nickel linking layer (upper left) exposed to a laser (800 nm) shows the cellular uptake and protein release.

Credit: UCSB

Using inorganic gold nanoshells and a near-infrared laser, UCSB biochemistry professor Norbert Reich and graduate student Demosthenes Morales demonstrate for the first time a method that affords both spatial and temporal control over protein delivery in cells.

"You can point the laser at cells where and when you want a particular protein to be turned on," Reich said. "And that means you can ask biological questions that you could never ask before because you're able to say I want this one cell to do this."

The researchers exploited the receptors on prostate cancer cells, which rely on the recognition of a C-end rule internalizing peptide that has been fused to the end of a green fluorescent protein. This peptide is very specific for the receptor and once the two meet, it actually takes in the protein-loaded nanoparticles and shepherds them into the cell via endocytosis, a process that brings large molecules into cells.

The team used a modular nickel linking layer on the surface of the nanoparticles that is able to support different kinds of proteins fused with a polyhistidine tag commonly found on proteins expressed in labs. "We want this to be applicable to any type of protein that has a polyhistidine tail," lead author Morales said, "so if you synthesize or grow proteins in a lab, you can easily load the protein onto our nanoparticles."

While the Reich Group's hollow gold nanoshells are effective carriers, transporting large biomolecules such as proteins into cells is only half the battle. In order for the protein to be effective once inside the cell, it must be released from the vesicle (endosome) holding it. The UCSB design enables that to happen.

When we excite these hollow gold nanoshells with light, the surface of the nanoparticle becomes somewhat hot," Morales said. "The light not only releases the cargo that's on the surface but also causes the formation of vapor bubbles, which expand and eventually pop the vesicle, allowing for endosome escape."

The Reich Group's construct is designed around the advantage of protein delivery's specificity. "The best thing about our platform is that it has a wide range of applicability," Morales noted. "Not only do we have the ability to target with a laser where and when we want to release our therapeutic, but we also leverage the fact that the protein itself is very specific. We have specificity in terms of time and we have specificity toward the target. This is why proteins are very fascinating as a potent therapeutic."

According to Reich, this technology has important implications for basic research. "Biologists are going to make use of this kind of technology but they aren't going to develop it," Reich said. "There are a few people on campus who could use this technology so we have a unique opportunity at UCSB to be the lead in interfacing between the developers and the users."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>