Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soluble Elements from a New Corner of the Periodic Table

07.06.2016

The world of chemistry has a new first: in the journal Nature Chemistry, a research group at the University of Würzburg has presented the first soluble and stable molecules containing an s-block atom in its elemental state. Normally these elements are highly reactive.

It is one of the more memorable experiments of high school chemistry lessons: when elemental sodium comes into contact with water it burns and explodes. Sodium simply isn't happy in its elemental form, making it highly reactive. This is more or less true for all of the other elements from the so-called "s-block" of the periodic table, to which sodium belongs.


Beryllium in the center, flanked by two stabilizing cyclic ligands: another "world premiere" from Würzburg chemistry.

(Graphic: Julia Schuster)

A chemistry research group at the Julius-Maximilians-Universität (JMU) of Würzburg in Bavaria, Germany, has now, for the first time, tamed one of these "wild" s-block metals. The researchers constructed molecules that incorporate one atom of the alkaline earth metal beryllium in its elemental state. That the molecules do not immediately decompose at room temperature is thanks to stabilization by two cyclic ligands.

The breakthrough from the research team of Professor Holger Braunschweig is presented in the top-tier journal Nature Chemistry, thanks to the unexpectedly high stability of the molecules. These results from the JMU chemistry laboratories are expected to open a new era for the chemistry of the elements of this corner of the periodic table.

Promising candidates for challenging reactions

The incorporation of hydrogen and carbon monoxide into organic molecules is an example of one of the challenging chemical reactions carried out on huge scales in industry. Currently, these reactions are exclusively carried out with help from expensive heavy metals such as rhodium, palladium and platinum. For reasons of sustainability and cost, replacing these expensive catalysts with alternatives from the main group elements of the periodic table – many of which are abundant in the Earth's crust – would be a huge step forward.

This often means accessing the elemental states of these atoms in molecular systems. However, this is by no means trivial, as many of the potential candidate atoms ¬– sodium being an extreme example – are highly reactive in their elemental states. Recent success has been made with p-block elements such as silicon, tin and boron, while this new work is the first ever example with an s-block metal, beryllium.

Developing alternatives to toxic beryllium

"The only drawback of beryllium is its toxicity", states Dr. Merle Arrowsmith, Alexander von Humboldt postdoctoral fellow in the group of Holger Braunschweig. Even more interesting would be to extend this chemistry to magnesium or calcium, elements that are both abundant and biocompatible, making them ideal as potential catalysts for important chemical reactions.

Given their success in incorporating elementary beryllium into a stable molecule, the chances are good that this could also work with other s-block metals. "Our discovery is a first step in capturing other s-block metal atoms in their elemental state, which we hope will promote reactions that usually only proceed with expensive heavy metals," says Ph.D. student Julia Schuster, who synthesised the new molecules. The research group is currently developing similar methods for other s-block metals.

„Neutral zero-valent s-block complexes with strong multiple bonding“, Merle Arrowsmith, Holger Braunschweig, Mehmet Ali Celik, Theresa Dellermann, Rian D. Dewhurst, William C. Ewing, Kai Hammond, Thomas Kramer, Ivo Krummenacher, Jan Mies, Krzysztof Radacki, Julia K. Schuster. Nature Chemistry, DOI 10.1038/nchem.2542, Advance Online Publication 2016, June 6th

Contact

Prof. Dr. Holger Braunschweig, Institut für Anorganische Chemie, JMU, T (0931) 31-85260, h.braunschweig@uni-wuerzburg.de

Weitere Informationen:

http://www-anorganik.chemie.uni-wuerzburg.de/en/institute_of_inorganic_chemistry... Website of the Institute for Inorganic Chemistry

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>