Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil crusts emit nitrogen oxides and nitrous acid

01.12.2015

A Mainz study shows that biological soil crusts release large quantities of reactive nitrogen compounds

For a long time now, researchers have been racking their brains over the large quantities of reactive nitrogen compounds observed in arid regions after periods of rainfall without being able to identify the source. A study recently published in the scientific journal entitled “Proceedings of the National Academy of Sciences of the United States of America” (PNAS) is now bringing light into the darkness. Bettina Weber and her colleagues from the Max Planck Institute for Chemistry in Mainz, the Max Planck Institute for Biogeochemistry in Jena and the Biodiversity and Climate Research Center in Frankfurt (BiK-F), were able to prove that biological soil crusts in arid regions emit nitrogen monoxide (NO) and nitrous acid (HONO) when moistened. The two reactive nitrogen compounds play a key role in the production of ozone and OH radicals, which control the atmosphere’s oxidation and self-cleaning properties.


Biological soil crust dominated by lichens and cyanobacteria in the Succulent Karoo, South Africa.

Picture: Bettina Weber


Overview over the Succulent Karoo in the region around Soebatsfontein, which is characterized by a dense coverage of biological soil crusts.

Picture: Bettina Weber

For several years, cryptogam layers composed of soil crusts, among other things, have been causing a stir in earth system and climate research. Indeed, in 2012, a team of researchers led by the Max Planck Institute for Chemistry were able to show that soil crusts are responsible for around half of the biological nitrogen fixation to the Earth’s surface. Bettina Weber and her colleagues took up the question of what happens to the large quantities of fixed nitrogen in the subsequent materials cycle. They have now managed to find their first answer and uncover a hitherto unknown release process for reactive nitrogen compounds.

“Our investigations have shown that biological soil crusts in arid regions release NO and HONO, whereby the quantity corresponds to around 20% of the amount of nitrogen oxides released globally through soils,” explains Bettina Weber, Group Leader in the Multiphase Chemistry Department at the Max Planck Institute for Chemistry, before adding: “While the release of nitrogen monoxide has already been demonstrated in other studies, we have now been able to prove that nitrous acid is also formed and released by biological soil crusts.”

It had previously been assumed that the release of nitrogen monoxide was due to abiotic processes. However, Bettina Weber’s team has now clearly proven that the organisms present in the soil crusts are responsible for the release.

Small-scale power plants in barren regions

“Biological soil crusts are like small-scale power plants,” explains Bettina Weber enthusiastically. “These layers, which are only a few millimeters thick, conceal a concentrate of organisms consisting of producers, consumers and decomposers and thus represent one of the smallest ecosystems in the world. This is where many processes important for the earth system happen in the smallest of spaces.” As the study shows, biological soil crusts in arid regions clearly play a key role in releasing atmospherically reactive nitrogen compounds. “Precipitation plays a major role, since moisture triggers the metabolic process in biological soil crusts,” adds Hang Su, who is also Group Leader in the Multiphase Chemistry Department at the Max Planck Institute for Chemistry and was involved in analyzing the data as a modeler.

Additionally, a team of researchers was recently able to prove, with involvement of the Max Planck Institute for Chemistry, that cryptogam layers also release nitrous oxide and negligible quantities of methane into the atmosphere. “Up until now, cryptogam layers were not included in global climate models. Given the number of new findings concerning how highly influential they are on biogeochemical cycle processes, they can no longer be left out,” summarizes Hang Su.

Biological soil crusts make up around one-ninth of the Earth’s surface. Since it can be assumed that climate change will continue to modify both the occurrence of soil crusts and the distribution and frequency of precipitation, the surface covers should be further examined and the results incorporated into computer models of the global materials cycles.

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/soil-crusts-emit-nitrogen-oxid...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>