Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoke and Mirrors on Coral Reefs: How a Tiny Fish Deceives its Prey

20.03.2015

Basel Zoologists are unveiling the colorful secrets of coral reefs: On the Australian Great Barrier Reef they discovered a coral reef fish, the dusky dottyback that flexibly adapts its coloration to mimic other fishes and in doing is able to prey on their juvenile offspring. By changing colors, the dusky dottyback also decreases its risk of being detected by predators. The study has been published in the latest issue of the renowned scientific journal Current Biology.

Tropical coral reefs like the Australian Great Barrier Reef are among the most colorful habitats in the world. However, the diversity in color still puzzles scientists: Why exactly do coral reefs host so many colorful organisms such as corals, crustaceans and fish?


2 A yellow dottyback is well camouflaged within its natural live coral habitat.

Christopher E Mirbach


Yellow dottyback (left) and the fish it imitates, an adult Ambon damselfish.

William E Feeney

The dusky dottyback (Pseudochromis fuscus), a small predatory fish that is found throughout the Indo-Pacific, occurs in many different colorations and has the peculiar ability to be able to change its body coloration. Why dottybacks vary in coloration and why they are able to change their color has long remained a secret.

An international research team led by evolutionary biologists Dr. Fabio Cortesi and Prof. Walter Salzburger from the University of Basel has now been able to explain why dottybacks adopt different colors.

So far, it had been assumed that the color variety is genetically determined, meaning that the different colored dottybacks had likely adapted to their respective habitat background or that coloration was sexually determined.

The zoologists were now able to show that dottybacks can actively change their color in a relatively short amount of time. Their goal: to mimic other fish species in their surroundings in order to prey on their juvenile offspring.

“Wolf in sheep's clothing”

Animals commonly use deception to increase access to food, reproductive opportunities or protection. However, if used too often or out of context, the impostor risks to be busted. The researchers observed that dottybacks used a particularly clever approach to reduce the threat of being found out. These fish change their color to mimic different harmless fish species in their surroundings to prevent being recognized by their prey, the offspring of the mimicked fish.

“This strategy is very similar to the classic example of the wolf in sheep's clothing. However, while the wolf may be found out eventually, dottybacks are able to change their coloration, making it difficult for their prey to learn about the threat they impose”, says first-author Dr. Fabio Cortesi. The study was conducted on the Great Barrier Reef in cooperation with colleagues from Australia, Great Britain, Canada and Sweden.

Researchers train fish

In addition, changing color also provides a second benefit to the dottybacks – it also increases their ability to hide from predators. The researchers trained bigger coral trout to strike at images of dottybacks in front of different backgrounds.

The experiment showed that coral trout struck significantly less often at the dottyback images that were color-matched to the natural background of those fish mimicked by the dottyback. “The dottybacks have developed an intricate form of mimicry that not only gives them a predatory advantage but also protects them from their own predators”, summarizes Cortesi the results.

A part of the riddle about the color richness of tropical coral reefs seems solved. Their inhabitants show an almost inconceivable variety in color and shapes, many of which serve the purpose of a warning signal or to increase protection from predators. Stonefish hide by mimicking their surroundings, sea slugs use vivid colors to warn predators about their distastefulness and cuttlefish are able to change their color in a matter of seconds to either court potential sexual partners or to hide from predators.

Original source

Fabio Cortesi, William E. Feeney, Maud C. O. Ferrari, Peter A. Waldie,
Genevieve A. C. Phillips, Eva C. McClure, Helen N. Sköld, Walter Salzburger, N.
Justin Marshall, and Karen L. Cheney
Phenotypic plasticity confers multiple fitness benefits to a mimic
Current Biology, published online 19 March 2015, doi: 10.1016/j.cub.2015.02.013

Further information

Dr. Fabio Cortesi, Department of Environmental Sciences, University of Basel, phone: +41 (0)78 761 24 41, email: fabio.cortesi@uqconnect.edu.au

Weitere Informationen:

https://www.youtube.com/watch?v=UFUQYFdZwlw - Video
http://www.salzburgerlab.org - Research group Prof. Walter Salzburger
http://www.cell.com/current-biology/abstract/S0960-9822%2815%2900151-7 - Abstract

Christoph Dieffenbacher | Universität Basel

Further reports about: Fish Great Barrier Reef Mirrors Reefs Smoke coral reefs fish species predatory fish

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>