Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smoke and Mirrors on Coral Reefs: How a Tiny Fish Deceives its Prey


Basel Zoologists are unveiling the colorful secrets of coral reefs: On the Australian Great Barrier Reef they discovered a coral reef fish, the dusky dottyback that flexibly adapts its coloration to mimic other fishes and in doing is able to prey on their juvenile offspring. By changing colors, the dusky dottyback also decreases its risk of being detected by predators. The study has been published in the latest issue of the renowned scientific journal Current Biology.

Tropical coral reefs like the Australian Great Barrier Reef are among the most colorful habitats in the world. However, the diversity in color still puzzles scientists: Why exactly do coral reefs host so many colorful organisms such as corals, crustaceans and fish?

2 A yellow dottyback is well camouflaged within its natural live coral habitat.

Christopher E Mirbach

Yellow dottyback (left) and the fish it imitates, an adult Ambon damselfish.

William E Feeney

The dusky dottyback (Pseudochromis fuscus), a small predatory fish that is found throughout the Indo-Pacific, occurs in many different colorations and has the peculiar ability to be able to change its body coloration. Why dottybacks vary in coloration and why they are able to change their color has long remained a secret.

An international research team led by evolutionary biologists Dr. Fabio Cortesi and Prof. Walter Salzburger from the University of Basel has now been able to explain why dottybacks adopt different colors.

So far, it had been assumed that the color variety is genetically determined, meaning that the different colored dottybacks had likely adapted to their respective habitat background or that coloration was sexually determined.

The zoologists were now able to show that dottybacks can actively change their color in a relatively short amount of time. Their goal: to mimic other fish species in their surroundings in order to prey on their juvenile offspring.

“Wolf in sheep's clothing”

Animals commonly use deception to increase access to food, reproductive opportunities or protection. However, if used too often or out of context, the impostor risks to be busted. The researchers observed that dottybacks used a particularly clever approach to reduce the threat of being found out. These fish change their color to mimic different harmless fish species in their surroundings to prevent being recognized by their prey, the offspring of the mimicked fish.

“This strategy is very similar to the classic example of the wolf in sheep's clothing. However, while the wolf may be found out eventually, dottybacks are able to change their coloration, making it difficult for their prey to learn about the threat they impose”, says first-author Dr. Fabio Cortesi. The study was conducted on the Great Barrier Reef in cooperation with colleagues from Australia, Great Britain, Canada and Sweden.

Researchers train fish

In addition, changing color also provides a second benefit to the dottybacks – it also increases their ability to hide from predators. The researchers trained bigger coral trout to strike at images of dottybacks in front of different backgrounds.

The experiment showed that coral trout struck significantly less often at the dottyback images that were color-matched to the natural background of those fish mimicked by the dottyback. “The dottybacks have developed an intricate form of mimicry that not only gives them a predatory advantage but also protects them from their own predators”, summarizes Cortesi the results.

A part of the riddle about the color richness of tropical coral reefs seems solved. Their inhabitants show an almost inconceivable variety in color and shapes, many of which serve the purpose of a warning signal or to increase protection from predators. Stonefish hide by mimicking their surroundings, sea slugs use vivid colors to warn predators about their distastefulness and cuttlefish are able to change their color in a matter of seconds to either court potential sexual partners or to hide from predators.

Original source

Fabio Cortesi, William E. Feeney, Maud C. O. Ferrari, Peter A. Waldie,
Genevieve A. C. Phillips, Eva C. McClure, Helen N. Sköld, Walter Salzburger, N.
Justin Marshall, and Karen L. Cheney
Phenotypic plasticity confers multiple fitness benefits to a mimic
Current Biology, published online 19 March 2015, doi: 10.1016/j.cub.2015.02.013

Further information

Dr. Fabio Cortesi, Department of Environmental Sciences, University of Basel, phone: +41 (0)78 761 24 41, email:

Weitere Informationen: - Video - Research group Prof. Walter Salzburger - Abstract

Christoph Dieffenbacher | Universität Basel

Further reports about: Fish Great Barrier Reef Mirrors Reefs Smoke coral reefs fish species predatory fish

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>