Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoke and Mirrors on Coral Reefs: How a Tiny Fish Deceives its Prey

20.03.2015

Basel Zoologists are unveiling the colorful secrets of coral reefs: On the Australian Great Barrier Reef they discovered a coral reef fish, the dusky dottyback that flexibly adapts its coloration to mimic other fishes and in doing is able to prey on their juvenile offspring. By changing colors, the dusky dottyback also decreases its risk of being detected by predators. The study has been published in the latest issue of the renowned scientific journal Current Biology.

Tropical coral reefs like the Australian Great Barrier Reef are among the most colorful habitats in the world. However, the diversity in color still puzzles scientists: Why exactly do coral reefs host so many colorful organisms such as corals, crustaceans and fish?


2 A yellow dottyback is well camouflaged within its natural live coral habitat.

Christopher E Mirbach


Yellow dottyback (left) and the fish it imitates, an adult Ambon damselfish.

William E Feeney

The dusky dottyback (Pseudochromis fuscus), a small predatory fish that is found throughout the Indo-Pacific, occurs in many different colorations and has the peculiar ability to be able to change its body coloration. Why dottybacks vary in coloration and why they are able to change their color has long remained a secret.

An international research team led by evolutionary biologists Dr. Fabio Cortesi and Prof. Walter Salzburger from the University of Basel has now been able to explain why dottybacks adopt different colors.

So far, it had been assumed that the color variety is genetically determined, meaning that the different colored dottybacks had likely adapted to their respective habitat background or that coloration was sexually determined.

The zoologists were now able to show that dottybacks can actively change their color in a relatively short amount of time. Their goal: to mimic other fish species in their surroundings in order to prey on their juvenile offspring.

“Wolf in sheep's clothing”

Animals commonly use deception to increase access to food, reproductive opportunities or protection. However, if used too often or out of context, the impostor risks to be busted. The researchers observed that dottybacks used a particularly clever approach to reduce the threat of being found out. These fish change their color to mimic different harmless fish species in their surroundings to prevent being recognized by their prey, the offspring of the mimicked fish.

“This strategy is very similar to the classic example of the wolf in sheep's clothing. However, while the wolf may be found out eventually, dottybacks are able to change their coloration, making it difficult for their prey to learn about the threat they impose”, says first-author Dr. Fabio Cortesi. The study was conducted on the Great Barrier Reef in cooperation with colleagues from Australia, Great Britain, Canada and Sweden.

Researchers train fish

In addition, changing color also provides a second benefit to the dottybacks – it also increases their ability to hide from predators. The researchers trained bigger coral trout to strike at images of dottybacks in front of different backgrounds.

The experiment showed that coral trout struck significantly less often at the dottyback images that were color-matched to the natural background of those fish mimicked by the dottyback. “The dottybacks have developed an intricate form of mimicry that not only gives them a predatory advantage but also protects them from their own predators”, summarizes Cortesi the results.

A part of the riddle about the color richness of tropical coral reefs seems solved. Their inhabitants show an almost inconceivable variety in color and shapes, many of which serve the purpose of a warning signal or to increase protection from predators. Stonefish hide by mimicking their surroundings, sea slugs use vivid colors to warn predators about their distastefulness and cuttlefish are able to change their color in a matter of seconds to either court potential sexual partners or to hide from predators.

Original source

Fabio Cortesi, William E. Feeney, Maud C. O. Ferrari, Peter A. Waldie,
Genevieve A. C. Phillips, Eva C. McClure, Helen N. Sköld, Walter Salzburger, N.
Justin Marshall, and Karen L. Cheney
Phenotypic plasticity confers multiple fitness benefits to a mimic
Current Biology, published online 19 March 2015, doi: 10.1016/j.cub.2015.02.013

Further information

Dr. Fabio Cortesi, Department of Environmental Sciences, University of Basel, phone: +41 (0)78 761 24 41, email: fabio.cortesi@uqconnect.edu.au

Weitere Informationen:

https://www.youtube.com/watch?v=UFUQYFdZwlw - Video
http://www.salzburgerlab.org - Research group Prof. Walter Salzburger
http://www.cell.com/current-biology/abstract/S0960-9822%2815%2900151-7 - Abstract

Christoph Dieffenbacher | Universität Basel

Further reports about: Fish Great Barrier Reef Mirrors Reefs Smoke coral reefs fish species predatory fish

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>