Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone thumb skills are altering our brains

29.12.2014

Typing, sweeping, swiping – Smartphone users have nimble thumbs and forefingers. However, it is not only finger dexterity that the daily use of mobile technology develops. As researchers from the Universities of Zurich and Fribourg demonstrate, it also alters the brain. The cortex quickly adapts to these repetitive finger movements, proving once again just how plastic our brains are.

Every region of the body – from the toes to the jaw and tongue – has a particular processing area in our emotional center in the brain, the somatosensory cortex. These areas are flexible and can change. In the case of violinists, for instance, the area representing the fingers that guide the instrument is larger than in other people.

Arko Ghosh from the Institute of Neuroinformatics of the University of Zurich and ETH Zurich decided to investigate the impact that the finger dexterity of Smartphone users has on the brain and discovered that the day-to-day plasticity of the human brain could be researched based on our Smartphone usage. And with their recordings the digital devices provide a fertile source of data for this behavior. “Smartphones offer us an opportunity to understand how normal life shapes the brains of ordinary people,” explains Ghosh.

Teaming up with colleagues from the University of Fribourg, he studied the activation in the sensorimotor cortex, which is triggered by finger movements. The scientists used electroencephalography (EEG) to measure the cortical brain activity in 37 right-handed people, of whom 26 were touchscreen Smartphone users and 11 users of old cellphones. 62 electrodes placed on the test subject’s heads recorded this potential based on movements of the thumb, forefinger and middle finger. The results revealed that the cortical representation in touchscreen Smartphone users differed compared to people with conventional cellphones.

Cortical activity depends on daily usage
Ghosh was also able to demonstrate that the frequency of Smartphone usage influences cortical activity. The more the Smartphone had been used in the previous ten days, the greater the signal in the brain. This correlation was the strongest, i.e. proportional, in the area that represented the thumb.

“At first glance, this discovery seems comparable to what happens in violinists,” explains Ghosh. However, the researchers were able to draw two distinctions: Firstly, how long Smartphone users have owned and used a device does not play a role. In the case of violinists, however, the activity in the brain depended on the age at which they started playing. Secondly, there is a linear connection between the activation in the brain and the most recent use of a Smartphone, while there was no evidence of this for violinists in earlier studies.

“The digital technology we use on a daily basis shapes the sensory processing in our brains – and on a scale that surprised us,” says the neuroscientist in summary.


Literature:
Anne-Dominique Gindrat, Magali Chytiris, Myriam Balerna, Eric Rouiller, Arko Ghosh. Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology.


Contacts:
Arko Ghosh
Institute of Neuroinformatics
University of Zurich, ETH Zurich
Tel.: +41 44 635 30 52
Email: arko@ini.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>