Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small signaling molecule gives green light for cell division

07.05.2015

Generating offspring is the evolutionary goal of all living organisms. The multiplication of individual cells is coordinated by the cell cycle. For the discovery of how this process is regulated in eukaryotes the Noble Prize was awarded in 2001.

The team of Prof. Urs Jenal at the Biozentrum of the University of Basel has now identified the central switch for reproduction in bacteria. While cell cycle progression in eukaryotes is regulated by small proteins called cyclins, in bacteria this role is adopted by a small signaling molecule, c-di-GMP. In the current issue of «Nature» the scientists describe the molecular details of this process.


Enzymes producing the small signalling molecule c-di-GMP (yellow) control Caulobacter cell cycle.

University of Basel, Biozentrum

Though very tiny, the molecule is vital for the survival of almost all bacteria. This signaling messenger – called c-di-GMP – controls behavioral processes in bacteria. For instance, it ensures that bacteria join together to form biofilms, which can cause chronic infections in humans.

The scientists working with Prof. Urs Jenal at the Biozentrum of the University of Basel have now demonstrated that c-di-GMP also plays a decisive role in bacterial reproduction. They discovered that oscillating levels of the messenger subsequently influence the activity of key regulatory proteins, thereby controlling cell cycle progression and proliferation of bacteria.

Signaling molecule sets traffic lights at check points

How do cells multiply? When cells divide, two daughter cells arise from one mother cell. Before this, however, the cell must go through several phases from growth, to the replication of its genetic information and finally to cell division.

This process is known as the cell cycle. In their study on the model bacterium Caulobacter crescentus the infection biologists show for the first time, that the signaling messenger c-di-GMP controls the cell cycle in a similar way as a traffic light works. In the absence of c-di-GMP in the cell, the light shows red.

This indicates that the cell will have to remain in the first phase of the cell cycle. If the c-di-GMP level increases, the light switches to green and the cell enters the next phase. The scientists have investigated what exactly occurs on the molecular level.

c-di-GMP controls an enzyme with two modes of action

The role of this traffic light is played by an enzyme that works in two different ways. “When c-di-GMP is lacking, it blocks the process which leads to replication of the genetic material,” explains Jenal. “However, as soon as c-di-GMP is produced, it binds to the enzyme, thus altering its structure and mode of action. Subsequently, this blockade is lifted and the bacterial chromosomes can be copied.”

This step marks the entry into the next phase of the cell cycle. The varying spatial distribution of the signaling molecule in the dividing mother cell also plays an important role in the behavior of the progeny.

Pathogens use the same signaling network

It is the first time that the researchers have been able to establish a direct connection between the two major regulatory networks of bacterial cells, – the small messenger and important regulatory enzymes called kinases. The insights gained provide an important basis for elucidating the much more complicated c-di-GMP networks of pathogens.

The signaling molecule is involved in virulence, persistence mechanisms and antibiotic resistance of pathogens. For instance, dangerous pathogens causing cholera or pneumonia use c-di-GMP signaling to survive in their human host. As a next step, the researchers want to figure out, whether this molecule acts in these pathogens in the same way as in the model bacterium C. crescentus.

Original paper

Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller S, and Jenal U.
Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature; published online 6th May 2015.

Further informations

Prof. Urs Jenal, Biozentrum University of Basel, Tel: +41 61 267 21 35,
E-Mail: urs.jenal@unibas.ch

Weitere Informationen:

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14473.html - Original paper

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>