Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small differences, big effect

07.04.2015

Variability helps mammals to become invasive

From the time humans began discovering and conquering new continents, they also started transporting animals and plants around the world and releasing them in locations where they never occurred before. Most of these alien species died out quickly, but many established populations and some even multiplied and became invasive, causing tremendous economic and environmental harm.


Many mammal species are highly variable in their body size, here illustrated by the sizes of rabbit (Oryctolagus cuniculus, upper row) and hare (Lepus europaeus, lower row) skulls. The picture was taken with skulls from the collection of the Estación Biológica de Doñana-CSIC, Sevilla, Spain.

© Héctor Garrido (Estación Biológica de Doñana, CSIC)

In a recently published article in the journal “The American Naturalist”, scientists from Spain, Switzerland and Germany argue that successful invaders are particularly variable and can therefore adapt to many different environmental conditions.

In Australia, for example, rabbits have devastated large areas of fertile land resulting in millions of dollars of damage to crops each year and the extinction of many native species. In Europe, there are about 13,000 known alien species, which cost more than €12 billion (US $14 billion) in damages each year.

To prevent further problems, scientists have searched for general traits that could characterize successful invaders. Unfortunately, this search has had limited success. In a new study published in the journal „The American Naturalist”, Manuela González-Suárez (Estación Biológica de Doñana CSIC, Spain), Sven Bacher (University of Fribourg, Switzerland) and Jonathan Jeschke (Technische Universität München, Leibniz-Institute of Freshwater Ecology and Inland Fisheries and Freie Universität Berlin, Germany) suggest that previous research largely failed to identify predictive factors for invasion success because it generally focused on average species traits. The authors argue that species exposed to a novel environment will have higher chances of surviving if they are variable and can therefore adapt to many different environmental conditions.

The study analyzes a global dataset of introductions of mammals to locations outside their native ranges and shows that species with large variation in body size establish more often.

These findings can help predict and prevent new invasions, for example by focusing control measures on the most variable species. In addition, the study can also help improve the control of biological pest organisms or the reintroduction of species of conservation concern.

Source:
Manuela González-Suárez, Sven Bacher, Jonathan M. Jeschke (2015): Intraspecific trait variation is correlated with establishment success of alien mammals. The American Naturalist, DOI: 10.1086/681105.

Picture:
Many mammal species are highly variable in their body size, here illustrated by the sizes of rabbit (Oryctolagus cuniculus, upper row) and hare (Lepus europaeus, lower row) skulls. The picture was taken with skulls from the collection of the Estación Biológica de Doñana-CSIC, Sevilla, Spain.

Contact:
Jonathan Jeschke
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), and
Freie Universität Berlin
Königin-Luise-Straße 1-3
14195 Berlin, Germany
+49 30 83871046

Manuela González-Suárez
Estación Biológica de Doñana CSIC
Calle Américo Vespucio s/n
41092 Sevilla, Spain
+34 954 232 340 (ext. 1109)

Sven Bacher
Universität Fribourg
Chemin du Musée 10
1700 Fribourg, Switzerland
+41 26 3008822

Weitere Informationen:

jeschke@igb-berlin.de
jonathan.jeschke@fu-berlin.de
manuela.gonzalez@ebd.csic.es
sven.bacher@unifr.ch

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>