Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small differences, big effect

07.04.2015

Variability helps mammals to become invasive

From the time humans began discovering and conquering new continents, they also started transporting animals and plants around the world and releasing them in locations where they never occurred before. Most of these alien species died out quickly, but many established populations and some even multiplied and became invasive, causing tremendous economic and environmental harm.


Many mammal species are highly variable in their body size, here illustrated by the sizes of rabbit (Oryctolagus cuniculus, upper row) and hare (Lepus europaeus, lower row) skulls. The picture was taken with skulls from the collection of the Estación Biológica de Doñana-CSIC, Sevilla, Spain.

© Héctor Garrido (Estación Biológica de Doñana, CSIC)

In a recently published article in the journal “The American Naturalist”, scientists from Spain, Switzerland and Germany argue that successful invaders are particularly variable and can therefore adapt to many different environmental conditions.

In Australia, for example, rabbits have devastated large areas of fertile land resulting in millions of dollars of damage to crops each year and the extinction of many native species. In Europe, there are about 13,000 known alien species, which cost more than €12 billion (US $14 billion) in damages each year.

To prevent further problems, scientists have searched for general traits that could characterize successful invaders. Unfortunately, this search has had limited success. In a new study published in the journal „The American Naturalist”, Manuela González-Suárez (Estación Biológica de Doñana CSIC, Spain), Sven Bacher (University of Fribourg, Switzerland) and Jonathan Jeschke (Technische Universität München, Leibniz-Institute of Freshwater Ecology and Inland Fisheries and Freie Universität Berlin, Germany) suggest that previous research largely failed to identify predictive factors for invasion success because it generally focused on average species traits. The authors argue that species exposed to a novel environment will have higher chances of surviving if they are variable and can therefore adapt to many different environmental conditions.

The study analyzes a global dataset of introductions of mammals to locations outside their native ranges and shows that species with large variation in body size establish more often.

These findings can help predict and prevent new invasions, for example by focusing control measures on the most variable species. In addition, the study can also help improve the control of biological pest organisms or the reintroduction of species of conservation concern.

Source:
Manuela González-Suárez, Sven Bacher, Jonathan M. Jeschke (2015): Intraspecific trait variation is correlated with establishment success of alien mammals. The American Naturalist, DOI: 10.1086/681105.

Picture:
Many mammal species are highly variable in their body size, here illustrated by the sizes of rabbit (Oryctolagus cuniculus, upper row) and hare (Lepus europaeus, lower row) skulls. The picture was taken with skulls from the collection of the Estación Biológica de Doñana-CSIC, Sevilla, Spain.

Contact:
Jonathan Jeschke
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), and
Freie Universität Berlin
Königin-Luise-Straße 1-3
14195 Berlin, Germany
+49 30 83871046

Manuela González-Suárez
Estación Biológica de Doñana CSIC
Calle Américo Vespucio s/n
41092 Sevilla, Spain
+34 954 232 340 (ext. 1109)

Sven Bacher
Universität Fribourg
Chemin du Musée 10
1700 Fribourg, Switzerland
+41 26 3008822

Weitere Informationen:

jeschke@igb-berlin.de
jonathan.jeschke@fu-berlin.de
manuela.gonzalez@ebd.csic.es
sven.bacher@unifr.ch

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>