Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small cell extension with a large effect – the link between cilia and diabetes

07.11.2014

Cilia are tiny extensions on cells and they are credited with many important functions.

A research team led by Dr Jantje Gerdes and Professor Per-Olof Berggren now demonstrate that insulin receptors sit on the cilia of beta cells in the pancreas. The cell extensions consequently play an important role in insulin release. In the 'Nature communications' journal, the scientists report that changed ciliary function can be associated with the development of type 2 diabetes.


Beta cells in Langerhans island, green:cilia, blue: cell cores, red: insulin. Source: Helmholtz Zentrum München

Scientists at Helmholtz Zentrum München (HMGU), at Karolinska Institutet (KI), Stockholm and the University College London investigated the function of ciliary cell extensions in the pancreas. Stimulation of the insulin-producing beta cells increases the number of insulin receptors on their cilia. The cilia consequently play an important role in the release and signal transduction of insulin, a hormone that reduces sugar levels.

Defective cilia lead to elevated blood sugar levels and lowered insulin release

The lead author of the paper Dr. Jantje Gerdes, formerly at the Rolf Luft Research Center for Diabetes and Endocrinology, KI and now at the Institute of Diabetes and Regeneration Research at the HMGU, found significantly elevated blood sugar levels in animal models when the cilia were genetically reduced or functionally limited. The insulin release in mice with few/defective cilia was also reduced.

"It has been known for some time that the rate of type 2 diabetes is above average in people with ciliopathy, which is a pathological ciliary dysfunction. Our results confirm this observation and additionally explain how cilia are linked to sugar metabolism and diabetes," explains study leader Gerdes.

The senior author of the paper, Professor Per-Olof Berggren, at KI adds, "Ciliary dysfunction and defective glucose utilization are directly linked. Ciliopathies therefore have a potential function as models in the investigation of many still unknown mechanisms that underlie diabetes."

Further Information

Original publicationen:
Gerdes, J. et al. (2014). Ciliary dysfunction impairs insulin secretion and promotes development of Type 2 Diabetes in rodents, Nature communications, doi: 10.1038/ncomms6308

Link to publication


The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy and prevention of wide-spread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,200 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centres with around 34,000 employees. The Helmholtz Zentrum München is a partner in the Deutsches Zentrum für Diabetesforschung e.V.

The German Zentrum für Diabetesforschung e.V. (German Center for Diabetes Research) brings together experts in the area of diabetes research and combines basic research, epidemiology and clinical applications. The members are the German Diabetes Center in Düsseldorf (DDZ), the German Institute of Human Nutrition Research (DIfE) in Potsdam-Rehbrücke, Helmholtz Zentrum München – German Research Center for Environmental Health, the Paul Langerhans Institutes of Carl Gustav Carus University Hospital Dresden and of Eberhard-Karls-University of Tuebingen, the Science Association Gottfried Wilhelm Leibniz e.V., and the Helmholtz Association of German Research Centres. The objective of the DZD is to find answers to open questions in diabetes research by means of a novel, integrative research approach and to make a significant contribution to improving the prevention, diagnosis and treatment of diabetes mellitus.

The work of the Institute of Diabetes and Regeneration Research (IDR) concentrates on biological and physiological research of the pancreas and the insulin-producing beta cells. The IDR consequently contributes to explaining the development of diabetes and the discovery of new risk genes for the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for approaches to regenerative therapy for diabetes. The IDR is a part of the Helmholtz Diabetes Center (HDC).

Scientific contact
Dr. Jantje Gerdes, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Diabetes and Regeneration Research, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel.: +49 89-3187-2072 - Email


Contact

Communication Department

Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Germany
Phone: +49 89 3187-2238

Jantje Gerdes | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/article/25415/index.html

Further reports about: Diabetes Environmental Health Regeneration beta beta cells cilia diseases function levels pancreas sugar

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>