Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small cell extension with a large effect – the link between cilia and diabetes


Cilia are tiny extensions on cells and they are credited with many important functions.

A research team led by Dr Jantje Gerdes and Professor Per-Olof Berggren now demonstrate that insulin receptors sit on the cilia of beta cells in the pancreas. The cell extensions consequently play an important role in insulin release. In the 'Nature communications' journal, the scientists report that changed ciliary function can be associated with the development of type 2 diabetes.

Beta cells in Langerhans island, green:cilia, blue: cell cores, red: insulin. Source: Helmholtz Zentrum München

Scientists at Helmholtz Zentrum München (HMGU), at Karolinska Institutet (KI), Stockholm and the University College London investigated the function of ciliary cell extensions in the pancreas. Stimulation of the insulin-producing beta cells increases the number of insulin receptors on their cilia. The cilia consequently play an important role in the release and signal transduction of insulin, a hormone that reduces sugar levels.

Defective cilia lead to elevated blood sugar levels and lowered insulin release

The lead author of the paper Dr. Jantje Gerdes, formerly at the Rolf Luft Research Center for Diabetes and Endocrinology, KI and now at the Institute of Diabetes and Regeneration Research at the HMGU, found significantly elevated blood sugar levels in animal models when the cilia were genetically reduced or functionally limited. The insulin release in mice with few/defective cilia was also reduced.

"It has been known for some time that the rate of type 2 diabetes is above average in people with ciliopathy, which is a pathological ciliary dysfunction. Our results confirm this observation and additionally explain how cilia are linked to sugar metabolism and diabetes," explains study leader Gerdes.

The senior author of the paper, Professor Per-Olof Berggren, at KI adds, "Ciliary dysfunction and defective glucose utilization are directly linked. Ciliopathies therefore have a potential function as models in the investigation of many still unknown mechanisms that underlie diabetes."

Further Information

Original publicationen:
Gerdes, J. et al. (2014). Ciliary dysfunction impairs insulin secretion and promotes development of Type 2 Diabetes in rodents, Nature communications, doi: 10.1038/ncomms6308

Link to publication

The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy and prevention of wide-spread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,200 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centres with around 34,000 employees. The Helmholtz Zentrum München is a partner in the Deutsches Zentrum für Diabetesforschung e.V.

The German Zentrum für Diabetesforschung e.V. (German Center for Diabetes Research) brings together experts in the area of diabetes research and combines basic research, epidemiology and clinical applications. The members are the German Diabetes Center in Düsseldorf (DDZ), the German Institute of Human Nutrition Research (DIfE) in Potsdam-Rehbrücke, Helmholtz Zentrum München – German Research Center for Environmental Health, the Paul Langerhans Institutes of Carl Gustav Carus University Hospital Dresden and of Eberhard-Karls-University of Tuebingen, the Science Association Gottfried Wilhelm Leibniz e.V., and the Helmholtz Association of German Research Centres. The objective of the DZD is to find answers to open questions in diabetes research by means of a novel, integrative research approach and to make a significant contribution to improving the prevention, diagnosis and treatment of diabetes mellitus.

The work of the Institute of Diabetes and Regeneration Research (IDR) concentrates on biological and physiological research of the pancreas and the insulin-producing beta cells. The IDR consequently contributes to explaining the development of diabetes and the discovery of new risk genes for the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for approaches to regenerative therapy for diabetes. The IDR is a part of the Helmholtz Diabetes Center (HDC).

Scientific contact
Dr. Jantje Gerdes, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Diabetes and Regeneration Research, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel.: +49 89-3187-2072 - Email


Communication Department

Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Phone: +49 89 3187-2238

Jantje Gerdes | EurekAlert!
Further information:

Further reports about: Diabetes Environmental Health Regeneration beta beta cells cilia diseases function levels pancreas sugar

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>