Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small cell extension with a large effect – the link between cilia and diabetes

07.11.2014

Cilia are tiny extensions on cells and they are credited with many important functions.

A research team led by Dr Jantje Gerdes and Professor Per-Olof Berggren now demonstrate that insulin receptors sit on the cilia of beta cells in the pancreas. The cell extensions consequently play an important role in insulin release. In the 'Nature communications' journal, the scientists report that changed ciliary function can be associated with the development of type 2 diabetes.


Beta cells in Langerhans island, green:cilia, blue: cell cores, red: insulin. Source: Helmholtz Zentrum München

Scientists at Helmholtz Zentrum München (HMGU), at Karolinska Institutet (KI), Stockholm and the University College London investigated the function of ciliary cell extensions in the pancreas. Stimulation of the insulin-producing beta cells increases the number of insulin receptors on their cilia. The cilia consequently play an important role in the release and signal transduction of insulin, a hormone that reduces sugar levels.

Defective cilia lead to elevated blood sugar levels and lowered insulin release

The lead author of the paper Dr. Jantje Gerdes, formerly at the Rolf Luft Research Center for Diabetes and Endocrinology, KI and now at the Institute of Diabetes and Regeneration Research at the HMGU, found significantly elevated blood sugar levels in animal models when the cilia were genetically reduced or functionally limited. The insulin release in mice with few/defective cilia was also reduced.

"It has been known for some time that the rate of type 2 diabetes is above average in people with ciliopathy, which is a pathological ciliary dysfunction. Our results confirm this observation and additionally explain how cilia are linked to sugar metabolism and diabetes," explains study leader Gerdes.

The senior author of the paper, Professor Per-Olof Berggren, at KI adds, "Ciliary dysfunction and defective glucose utilization are directly linked. Ciliopathies therefore have a potential function as models in the investigation of many still unknown mechanisms that underlie diabetes."

Further Information

Original publicationen:
Gerdes, J. et al. (2014). Ciliary dysfunction impairs insulin secretion and promotes development of Type 2 Diabetes in rodents, Nature communications, doi: 10.1038/ncomms6308

Link to publication


The Helmholtz Zentrum München, as the German Research Center for Environmental Health, pursues the objective of developing personalized medicine for the diagnosis, therapy and prevention of wide-spread diseases such as diabetes mellitus and lung diseases. To this end, it investigates the interactions of genetics, environmental factors and lifestyle. The Zentrum's headquarters is located in Neuherberg in the north of Munich. The Helmholtz Zentrum München employs around 2,200 people and is a member of the Helmholtz Association, which has 18 scientific-technical and biological-medical research centres with around 34,000 employees. The Helmholtz Zentrum München is a partner in the Deutsches Zentrum für Diabetesforschung e.V.

The German Zentrum für Diabetesforschung e.V. (German Center for Diabetes Research) brings together experts in the area of diabetes research and combines basic research, epidemiology and clinical applications. The members are the German Diabetes Center in Düsseldorf (DDZ), the German Institute of Human Nutrition Research (DIfE) in Potsdam-Rehbrücke, Helmholtz Zentrum München – German Research Center for Environmental Health, the Paul Langerhans Institutes of Carl Gustav Carus University Hospital Dresden and of Eberhard-Karls-University of Tuebingen, the Science Association Gottfried Wilhelm Leibniz e.V., and the Helmholtz Association of German Research Centres. The objective of the DZD is to find answers to open questions in diabetes research by means of a novel, integrative research approach and to make a significant contribution to improving the prevention, diagnosis and treatment of diabetes mellitus.

The work of the Institute of Diabetes and Regeneration Research (IDR) concentrates on biological and physiological research of the pancreas and the insulin-producing beta cells. The IDR consequently contributes to explaining the development of diabetes and the discovery of new risk genes for the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for approaches to regenerative therapy for diabetes. The IDR is a part of the Helmholtz Diabetes Center (HDC).

Scientific contact
Dr. Jantje Gerdes, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Diabetes and Regeneration Research, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel.: +49 89-3187-2072 - Email


Contact

Communication Department

Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Ingolstädter Landstraße 1
85764 Neuherberg
Germany
Phone: +49 89 3187-2238

Jantje Gerdes | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/article/25415/index.html

Further reports about: Diabetes Environmental Health Regeneration beta beta cells cilia diseases function levels pancreas sugar

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>