Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bug, large impact: A new key player in the marine nitrogen cycle

13.09.2016

A study published in Nature Microbiology shows for the first time that a small nitrogen-fixing symbiosis contributes extensively to the total nitrogen fixation in the tropical North Atlantic. Nitrogen fixation is the largest source of nitrogen to the open ocean, and this symbiosis is thus a key player in the marine nitrogen cycle.

Nitrogen is essential to all forms of life: It is part of proteins, nucleic acids and other cellular structures. However, many oceanic regions are limited by the availability of nitrogen, such as the tropical North Atlantic. In this region, nitrogen supply to the open ocean comes mainly from nitrogen fixation and to a lesser extent from atmospheric deposition.


Clara Martínez-Pérez on board the research vessel, sampling an incubation bottle from a surface water flow-through incubator.

Tim Ferdelman


The small symbiosis of UCYN-A with a unicellular alga looks inconspicuous, but it seems to be a key player in the marine nitrogen cycle (green: UCYN-A-cell, orange/blue: algal cell)..

Clara Martínez-Pérez /Max-Planck-Institute for Marine Microbiology

Nitrogen fixation is the transformation of the inert nitrogen gas from the atmosphere into other forms of nitrogen, which can then be taken up by other microorganisms such as primary producers. The organisms performing nitrogen fixation are called nitrogen fixers or diazotrophs.

They can be considered the fertilizers of the large areas of the nutrient-limited oceans. Thus, it is crucial to determine the factors and key players of nitrogen fixation in order to understand how global changes might impact nitrogen fixation in the future and the possible resulting impacts on the ocean’s productivity.

Clara Martínez-Pérez and co-authors from the Max Planck Institute for Marine Microbiology in Bremen (MPI Bremen), the University of Kiel, and the GEOMAR in Kiel have now assessed the contribution of one of the most abundant diazotrophs (UCYN-A) in the ocean to total nitrogen fixation in the tropical North Atlantic. Despite its relatively high abundance compared to other diazotrophs, the activity and contribution of this small diazotroph, living in symbiosis with a small unicellular alga, has never been determined before. Their surprising results show that previous knowledge about the key players in nitrogen fixation might have to be revised.

A new player in the nitrogen cycle

The tropical North Atlantic, harboring about one quarter of global nitrogen fixation, has previously been believed to be dominated by Trichodesmium, a filamentous cyanobacterium blooming in such large numbers that it can be seen with the naked eye and by satellites. “However, there are many other diazotrophs in the ocean whose importance had not yet been quantified”, Martínez-Pérez explains.

To quantify the importance of UCYN-A, the scientists used several methods including a NanoSIMS, which allows for the detection and quantification of the activity of individual cells. “By this, we can quantify the ecological role of UCYN-A in the marine nitrogen cycle, which is essential information for global models of nutrient cycling”, says co-author Wiebke Mohr from the MPI Bremen.

Their results were up for a surprise: Martínez-Pérez and her colleagues show that UCYN-A is as important for nitrogen fixation in the tropical North Atlantic as is Trichodesmium. “Although Trichodesmium cells were very numerous, they were not fixing much nitrogen gas", says Martínez-Pérez. In contrast, the much smaller UCYN-A was very active. Living in association with a small alga also means that UCYN-A not only fixes nitrogen for itself but also the host alga. As a result, it contributed as much as Trichodesmium to the total nitrogen fixation across the tropical North Atlantic.

Oceanic cosmopolitans

The scientists further explored the global distribution of UCYN-A. They are found all over the oceans from the Arctic to the Antarctic circles (which is not the case for Trichodesmium which is usually in waters above 20 °C). “Thus, UCYN-A has the potential to be one of the main contributors to nitrogen fixation not just in the tropics but around the globe”, says Martínez-Pérez. It is interesting to note that, despite their activity and ecological relevance, the abundance of these symbioses is very low compared to other microorganisms in the oceans.

“One of the major challenges when quantifying these organisms was to actually find them under the microscope, since they are so rare”, explains Mohr. The low abundance of these organisms implies that they are rapidly consumed by grazers or otherwise removed from the surface waters. This would result in a very efficient transfer of the fixed nitrogen to the oceanic food web, and suggests that the contribution of UCYN-A to nitrogen fixation is even higher than quantified here. “Next, we would like to look into other regions of the ocean and quantify the abundance and activity of UCYN-A there. This will allow for deeper insights into their global role”, concludes Martínez-Pérez.

Original publication

The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Clara Martínez-Pérez, Wiebke Mohr, Carolin R. Löscher, Julien Dekaezemacker, Sten Littmann, Pelin Yilmaz, Nadine Lehnen, Bernhard M. Fuchs, Gaute Lavik, Ruth A.
Schmitz, Julie LaRoche, Marcel M. M. Kuypers. Nature Microbiology
DOI: 10.1038/nmicrobiol.2016.163

Contact

Dr. Wiebke Mohr,
Phone: 0421 2028 - 630
E-Mail: wmohr@mpi-bremen.de

Clara Martínez-Pérez
Phone: 0421 2028 - 653
E-Mail: cmartine@mpi-bremen.de

Or the press office

Dr. Fanni Aspetsberger
Phone: 0421 2028 947
E-Mail: faspetsb@mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>