Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small birds' vision: Not so sharp but superfast

21.03.2016

One may expect a creature that darts around its habitat to be capable of perceiving rapid changes as well. Yet birds are famed more for their good visual acuity. Joint research by Uppsala University, Stockholm University and the Swedish University of Agricultural Sciences (SLU) now shows that, in small passerines (perching birds) in the wild, vision is considerably faster than in any other vertebrates -- and more than twice as fast as ours. The new research findings are published today in PLOS ONE.

In behavioural experiments, the scientists have studied the ability to resolve visual detail in time in three small wild passerine species: blue tit, collared flycatcher and pied flycatcher. This ability is the temporal resolution of eyesight, i.e. the number of changes per second an animal is capable of perceiving. It may be compared to spatial resolution (visual acuity), a measure of the number of details per degree in the field of vision.


The video clip visualizes one advantage of the ultra rapid vision discovered in birds. The almost three times faster refreshment rate of visual input in a pied flycatcher than in a human makes it far easier to track and predict the flight paths of two blue bottle flies. This is most likely a crucial ability for a bird that catches its airborne prey on the wing.

Credit: Malin Thyselius

The researchers trained wild-caught birds to receive a food reward by distinguishing between a pair of lamps, one flickering and one shining a constant light. Temporal resolution was then determined by increasing the flicker rate to a threshold at which the birds could no longer tell the lamps apart.

This threshold, known as the CFF (critical flicker fusion rate), averaged between 129 and 137 hertz (Hz). In the pied flycatchers it reached as high as 146 Hz, some 50 Hz above the highest rate encountered for any other vertebrate. For humans, the CFF is usually approximately 60 Hz. For passerines, the world might to be said to be in slow motion compared with how it looks to us.

It has been argued before, but never investigated, that small and agile wild birds should have extremely fast vision. Nevertheless, the blue tits and flycatchers proved to have higher CFF rates than were predicted from their size and metabolic rates. This indicates an evolutionary history of natural selection for fast vision in these species.

The explanation might lie in small airborne birds' need to detect and track objects whose image moves very swiftly across the retina -- for blue tits, for example, to be able to see and avoid all branches when they take cover from predators by flying straight into bushes. Moreover, the three avian species investigated all, to a varying degree, subsist on the insects they catch. Flycatchers, as their name suggests, catch airborne insects. For this ability, aiming straight at the insect is not enough. Forward planning is required: the bird needs high temporal resolution to track the insect's movement and predict its location the next instant.

The new results give some cause for concern about captive birds' welfare. Small passerines are commonly kept in cages, and may be capable of seeing roughly as fast as their wild relatives. With the phase-out of incandescent light bulbs for reasons of energy efficiency, tame birds are increasingly often kept in rooms lit with low-energy light bulbs, fluorescent lamps or LED lighting. Many of these flicker at 100 Hz, which is thus invisible to humans but perhaps not to small birds in captivity. Studies have shown that flickering light can cause stress, behavioural disturbances and various forms of discomfort in humans and birds alike.

Of all the world's animals, the eagle has the sharpest vision. It can discern 143 lines within one degree of the field of vision, while a human with excellent sight manages about 60. The magnitude of this difference is almost exactly the same as between a human's top vision speed and a pied flycatcher's: 60 and 146 Hz respectively. Thus, the flycatcher's vision is faster than human vision to roughly the same extent as an eagle's vision is sharper. So small passerines' rapid vision is an evolutionary adaptation just as impressive as the sharp eyesight of birds of prey.

Anders Ödeen, the lecturer at Uppsala University's Department of Ecology and Genetics who headed the study, puts the research findings in perspective.

'Fast vision may, in fact, be a more typical feature of birds in general than visual acuity. Only birds of prey seem to have the ability to see in extremely sharp focus, while human visual acuity outshines that of all other bird species studied. On the other hand, there are lots of bird species similar to the blue tit, collared flycatcher and pied flycatcher, both ecologically and physiologically, so they probably also share the faculty of superfast vision.'

###

Jannika Boström, Marina Dimitrova, Cindy Canton, Olle Håstad, Anna Qvarnström, Anders Ödeen (2016) Ultra-rapid Vision in Birds, PLOS ONE

Link to manuscript once it goes live: http://dx.plos.org/10.1371/journal.pone.0151099

Media Contact

Anders Ödeen
Anders.Odeen@ebc.uu.se
46-703-015-262

 @UU_University

http://www.uu.se 

Anders Ödeen | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>