Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small birds' vision: Not so sharp but superfast


One may expect a creature that darts around its habitat to be capable of perceiving rapid changes as well. Yet birds are famed more for their good visual acuity. Joint research by Uppsala University, Stockholm University and the Swedish University of Agricultural Sciences (SLU) now shows that, in small passerines (perching birds) in the wild, vision is considerably faster than in any other vertebrates -- and more than twice as fast as ours. The new research findings are published today in PLOS ONE.

In behavioural experiments, the scientists have studied the ability to resolve visual detail in time in three small wild passerine species: blue tit, collared flycatcher and pied flycatcher. This ability is the temporal resolution of eyesight, i.e. the number of changes per second an animal is capable of perceiving. It may be compared to spatial resolution (visual acuity), a measure of the number of details per degree in the field of vision.

The video clip visualizes one advantage of the ultra rapid vision discovered in birds. The almost three times faster refreshment rate of visual input in a pied flycatcher than in a human makes it far easier to track and predict the flight paths of two blue bottle flies. This is most likely a crucial ability for a bird that catches its airborne prey on the wing.

Credit: Malin Thyselius

The researchers trained wild-caught birds to receive a food reward by distinguishing between a pair of lamps, one flickering and one shining a constant light. Temporal resolution was then determined by increasing the flicker rate to a threshold at which the birds could no longer tell the lamps apart.

This threshold, known as the CFF (critical flicker fusion rate), averaged between 129 and 137 hertz (Hz). In the pied flycatchers it reached as high as 146 Hz, some 50 Hz above the highest rate encountered for any other vertebrate. For humans, the CFF is usually approximately 60 Hz. For passerines, the world might to be said to be in slow motion compared with how it looks to us.

It has been argued before, but never investigated, that small and agile wild birds should have extremely fast vision. Nevertheless, the blue tits and flycatchers proved to have higher CFF rates than were predicted from their size and metabolic rates. This indicates an evolutionary history of natural selection for fast vision in these species.

The explanation might lie in small airborne birds' need to detect and track objects whose image moves very swiftly across the retina -- for blue tits, for example, to be able to see and avoid all branches when they take cover from predators by flying straight into bushes. Moreover, the three avian species investigated all, to a varying degree, subsist on the insects they catch. Flycatchers, as their name suggests, catch airborne insects. For this ability, aiming straight at the insect is not enough. Forward planning is required: the bird needs high temporal resolution to track the insect's movement and predict its location the next instant.

The new results give some cause for concern about captive birds' welfare. Small passerines are commonly kept in cages, and may be capable of seeing roughly as fast as their wild relatives. With the phase-out of incandescent light bulbs for reasons of energy efficiency, tame birds are increasingly often kept in rooms lit with low-energy light bulbs, fluorescent lamps or LED lighting. Many of these flicker at 100 Hz, which is thus invisible to humans but perhaps not to small birds in captivity. Studies have shown that flickering light can cause stress, behavioural disturbances and various forms of discomfort in humans and birds alike.

Of all the world's animals, the eagle has the sharpest vision. It can discern 143 lines within one degree of the field of vision, while a human with excellent sight manages about 60. The magnitude of this difference is almost exactly the same as between a human's top vision speed and a pied flycatcher's: 60 and 146 Hz respectively. Thus, the flycatcher's vision is faster than human vision to roughly the same extent as an eagle's vision is sharper. So small passerines' rapid vision is an evolutionary adaptation just as impressive as the sharp eyesight of birds of prey.

Anders Ödeen, the lecturer at Uppsala University's Department of Ecology and Genetics who headed the study, puts the research findings in perspective.

'Fast vision may, in fact, be a more typical feature of birds in general than visual acuity. Only birds of prey seem to have the ability to see in extremely sharp focus, while human visual acuity outshines that of all other bird species studied. On the other hand, there are lots of bird species similar to the blue tit, collared flycatcher and pied flycatcher, both ecologically and physiologically, so they probably also share the faculty of superfast vision.'


Jannika Boström, Marina Dimitrova, Cindy Canton, Olle Håstad, Anna Qvarnström, Anders Ödeen (2016) Ultra-rapid Vision in Birds, PLOS ONE

Link to manuscript once it goes live:

Media Contact

Anders Ödeen


Anders Ödeen | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>