Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slight Differences – New Insights into the Regulation of Disease-Associated Genes

16.06.2015

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, in collaboration with the National Heart Research Institute Singapore (NHRIS), have gained new insights into the regulation of disease-associated genes. They used a new technique that enables them to observe gene regulation at the level of protein production. They could thus capture more individual gene regulations than with traditional methods that only capture gene expression and transcription (Nature Communications, doi: 10.1038/ncomms8200)*.

When a gene is read, its blueprint for proteins encoded in the language of DNA is transcribed in the cell nucleus into RNA. “At this level, many but by far not all of the individual differences in gene regulation can be identified,” said Professor Norbert Hübner, senior author of the publication and head of the research group Genetics and Genomics of Cardiovascular Diseases at the MDC.

Together with Sebastian Schafer (MDC, NHRIS) and Eleonora Adami (MDC) as well as researchers from several research institutions in Berlin, the Netherlands, England and the Czech Republic, they investigated gene regulation on the next level, translation. It takes place outside the cell nucleus, in the cell plasma. During translation, the RNA sequence is translated into amino acid sequences and assembled into proteins in the protein factories of the cell, the ribosomes.

First, the researchers searched the entire genome of two strains of rats, – one strain had high blood pressure, the other strain not – and specifically investigated genes of the heart and liver tissue. Then they used a new technique called ribosome profiling, abbreviated ribo-seq, which enables them to determine what proportion of the transcriptome is actively translated into proteins.

The result: They observed almost double the number of differentially expressed heart and liver genes in translation as in transcription. Next, they compared these data with the corresponding human genes in genome-wide association studies.

This comparison revealed that a large number of heart and liver genes in humans are regulated primarily during translation. The researchers are confident that capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease.

*Translational regulation shapes the molecular landscape of complex disease phenotypes
Sebastian Schafer1,2,*, Eleonora Adami1,*, Matthias Heinig1,3, Katharina E. Costa Rodrigues1, Franziska Kreuchwig1, Jan Silhavy4, Sebastiaan van Heesch1, Deimante Simaite1, Nikolaus Rajewsky5,6, Edwin Cuppen7, Michal Pravenec4, Martin Vingron3, Stuart A. Cook2,8,9 & Norbert Hübner1,6,10
1Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
2National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
3Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
4Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenska 1083, 142 20 Prague 4, Czech Republic.
5Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
6DZHK (German Centre for Cardiovascular Research), Partner Site, 13347 Berlin, Germany.
7Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
8National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK.
9Duke-National University of Singapore, Singapore 169857, Singapore.
10Charité Universitätsmedizin, 10117 Berlin, Germany.
* These authors contributed equally to this work.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
https://www.mdc-berlin.de/en

Weitere Informationen:

https://www.mdc-berlin.de/44659109/en/news/2015/20150616-slight_differences___ne...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>