Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep loss causes brain vulnerability to toxic elements

10.06.2014

The longer the insomnia, junctions of cerebral blood vessels begin to degrade

In search of the answer to why do we sleep, research conducted at the Mexican Metropolitan Autonomous University (UAM) revealed that chronic sleep loss can cause certain neurotoxic molecules, which normally circulate in the blood, to be transported to the central nervous system and interfere with the function of neurons.


Beatriz Gómez González, professor and researcher at UAM and head of the scientific project, explained that this phenomenon arises due to an alteration in the central nervous system called blood-brain barrier, which is the component responsible for protecting the brain from potentially neurotoxic agents.

Through the induction of sleep loss on some animals, the specialist at UAM and his staff corroborated that the longer the period of insomnia, joints vessels in the blood-brain barrier began to degrade. "The blood vessels were found not so closely united, we observed that some elements could cross that barrier and reach the brain tissue itself," explained the researcher.

By entering the brain, some nerve agents could potentially affect neuronal function and even promote neuron death. For example, the specialist said, an agent called monosodium glutamate found in a wide range of processed foods may cause neuronal damage by overactivation of these cells (excitotoxicity), although the range of neurotoxic agents circulating in the blood is very extensive.

Furthermore, the research group at UAM studied the risks that could arise as a result of the administration of some drugs to the increased permeability of the blood-brain barrier induced by chronic sleep loss. Gómez González said that, based on some studies, it has been confirmed that some second-generation antihistamines permeate into the brain tissue when this phenomenon occurs.

"Although manufacturers of antibiotic drugs or second-generation antihistamines ensure that these do not affect brain function, there is evidence that these may impact on the central nervous system when there is an increase in the permeability of the blood-brain barrier," said the researcher. This phenomenon may cause some unwanted excitotoxicity effects in neurons, drowsiness, behavioral changes and even neuronal death.

Another phenomenon reported by researchers at UAM, with the induction of sleep loss in animals is the increased number of pinocytotic vesicles in cells. These relate to certain folds of a cell elements and capture materials found in the bloodstream; but this phenomenon may increase the risk of neurotoxic elements entering the brain tissue. "The animals that have been induced sleeplessness develop up to three times these vesicles compared to animals in natural state."

José Gotés | AlphaGalileo
Further information:
http://www.invdes.com.mx

Further reports about: UAM antihistamines blood death nervous neurons permeability phenomenon sleep toxic vesicles

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>