Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skilful cockatoos able to shape tools from different materials

16.11.2016

Tool manufacture was once regarded a defining feature of mankind, but it is now known that a variety of animal species use and make their own tools. In nature, some of the most striking cases of tool-related behaviour are seen not just among close relatives of Homo sapiens, such as chimps and other primates, but among birds including crows, vultures and Galapagos finches. Researchers from the University of Veterinary Medicine in Vienna and the University of Oxford have shown that Goffin’s cockatoos can make and use elongated tools of appropriate shape and length out of amorphous materials, suggesting that the birds can anticipate how the tools will be used. Biology Letters

In all cases, what makes this possible is possessing the right combination of heritable and acquired competencies, as well as being capable of a degree of individual creativity. The Goffin’s cockatoo is a particularly interesting example for scientists to study, as it is unlikely to have a repertoire of inherited tool-related skills and relies more on innovation and problem-solving.


The cockatoos can cut out elongated tools of a cardboard to rake pieces of food.

Bene Croy


The elongated tool the cockatoos were able to cut out of cardboards was exactly fitting in length and shape to rake food in a small box. (video)

Bene Croy

Why and how cockatoos can use tools so far unknown

The Goffin’s cockatoo, which is native to Indonesia, is neither known to use tools in the wild nor to have evolved related abilities for manipulating twigs for other purposes such as nest building. One bird, called Figaro, previously displayed the ability to spontaneously (ie without training) make tools by biting long splinters out of the wooden beams of its cage, which he then used to rake pieces of food that were otherwise out of reach. Three others have since followed, showing that making such tools is within the capacity of the species.

While impressive, these feats do not prove sensitivity to the need for the tools to be of a particular shape: because wood is fibrous, biting and pulling actions naturally split it into the long, narrow pieces that were necessary to succeed. If individuals are capable of anticipating the requirements of each tool, they should be able to produce functional instruments by displaying different actions and using different materials.

Cockatoos can even use cardboards for shaping tools

To test if the birds were in fact aiming to make elongated tools that could bridge a particular distance, the researchers gave them the problem of reaching a piece of food placed a few centimetres beyond a circular hole in the transparent wall of a box. They were given four different materials that required different manipulations to produce suitable tools: larch wood (already familiar to them), leafy beech twigs (which had to be trimmed to be functional), cardboard (which, lacking a fibrous structure, could be cut into any shape and length), and totally amorphous beeswax.

Dr Alice Auersperg, who heads the Goffin Laboratory in the Messerli Research Institute at the University of Veterinary Medicine, Vienna, said: ‘While none of the birds succeeded in making tools out of beeswax, we found that at least some of them could make suitable tools from the three remaining materials.’

The successful parrots made well-shaped tools, even though each material required different manipulation techniques. To make tools out of larch wood they bit the material once or twice and teared the resulting splinter off. To use the leafy twigs they snapped off redundant leaves and side branches until what was left was usable. Finally, to make cardboard tools they just cut what was necessary from the edge of the sheet provided.

New aspects for behavioural scientists

Dr Auersperg added: ‘To us, the tools made from cardboard were the most interesting ones, as this material was not pre-structured and required the birds to shape their tools more actively. They succeeded by placing a large number of parallel bite marks along the edge of the material like a hole punch, using their curved upper beak to cut the elongated piece out of the cardboard block after reaching a certain length. Interestingly, this length was usually just above or very close to the minimum length required to reach the food reward placed behind the barrier.’

Co-author Professor Alex Kacelnik, from the University of Oxford’s Department of Zoology, said: ‘Ultimately, we want to understand how animals think – namely, to produce the equivalent of explicit computer programs capable of doing what the birds do. We really don’t know if the birds can picture in their minds an object that doesn’t yet exist and follow this image as a template to build something new, or how their brains elicit the appropriate set of movements to organise their response to novel problems, but this is what we are trying to find out.

‘Studying tool-making in species like the Goffin’s cockatoo, which does not make tools naturally, is especially revealing, as these birds cannot do it by following pre-programmed instructions evolved to solve this specific problem. These cockatoos, like other parrots, offer wonderful research opportunities: their intelligence is flexible and powerful, they can solve physical and logical problems, they can learn from watching the behaviour of others, they can learn about the surrounding objects by playing – and now it seems plausible that they can imagine which object would allow them to solve a new problem and go on to build it. I am sure that they will keep surprising us.’

Service:
The article ‘Goffin’s cockatoos make the same tool type from different materials’ will be published in the journal Biology Letters at 0001 CET on Wednesday 16 November 2016.

About Messerli Research Institute
The Messerli Research Institute was founded in 2010 with support from the Messerli Foundation (Sörenberg, Switzerland) under the management of the University of Veterinary Medicine, Vienna in cooperation with the Medical University of Vienna and the University of Vienna. The research is devoted to the interaction between humans and animals, as well as its theoretical principles in animal cognition and behavior, comparative medicine and ethics. Its work is characterized by its broad interdisciplinary approach (biology, human medicine, veterinary medicine, philosophy, psychology, law) and strong international focus. http://www.vetmeduni.ac.at/en/messerli/

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Alice Auersperg
Messerli Research Institute
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 676 9390392
alice.auersperg@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>