Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skeletal Muscle Atrophy in Heart Failure – MDC and Charité Researchers Elucidate Mechanism

12.08.2015

It is a paradox: Patients with advanced congestive heart failure lose skeletal muscle mass, but their heart muscles become enlarged to provide the body with an adequate supply of blood and thus with oxygen. It has long been known that the protein angiotensin II plays a villainous role in this process. Now Dr. Philipp Du Bois and the cardiologist PD Dr. Jens Fielitz of the Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and the Charité – Universitätsmedizin Berlin, and Professor Eric N. Olson (University of Texas Southwestern Medical Center, Dallas, Texas, USA) have elucidated the process and identified new therapeutic targets (Circulation Research)*.

Congestive heart failure is one of the leading causes of death in industrialized countries. The disease has various causes, including high blood pressure, coronary artery disease, diabetes, obesity and age. “Thanks to improved medical care, we can now provide effective treatment for patients with heart failure and can improve their prognosis, i.e. extend their survival time.

However, this also means that we increasingly have patients in the advanced stage of the disease. They lose a lot of weight, which worsens their condition and becomes life threatening. This is mainly caused by the wasting of skeletal muscles, also called skeletal muscle atrophy, which leads to decreased muscle strength. Unfortunately, we are not able to successfully treat this concomitant disease,” said Dr. Fielitz. The cardiologist from the Virchow Clinic of the Charité heads the independent research group “Protein Regulation in Heart and Skeletal Muscle” at the ECRC in Berlin-Buch.

Angiotensin II induces muscle atrophy
From previous studies, it was known that the activation of the renin-angiotensin system (RAAS) in patients with heart failure leads to the wasting of skeletal muscles. This intricate system of hormones and enzymes normally regulates the water and salt balance of the body as well as blood pressure. Patients with heart failure have elevated levels of one of the players of this system in the blood, angiotensin II.

It was also known that angiotensin II was the villain that induced muscle atrophy. Angiotensin II activates the ubiquitin proteasome system (UPS), the body’s cellular shredding machine, to degrade proteins by forming a muscle enzyme to act as a switch. As soon as the muscle enzyme MuRF1 is activated, the UPS machinery degrades muscle proteins in the patients, causing the muscles to become thinner and weaker.

If the patients are administered an ACE inhibitor, the wasting of the skeletal muscles is reduced. ACE inhibitors block the formation of angiotensin II and are conventionally used in the treatment of heart failure patients. “Although ACE inhibitors are effective, they cannot completely halt the muscle wasting process. Often, after five to ten years, the treatment fails fails,” said Dr. Fielitz, explaining the problem.

New regulator and signaling pathway discovered
Moreover, the exact signaling pathway through which angiotensin II increases the formation of MuRF1 was hitherto not completely understood. But a full understanding is essential for finding new approaches to improved therapy. Dr. Fielitz and his colleagues therefore sought to find out exactly how angiotensin II increases the formation of MuRF1 in muscle cells and which signaling pathway regulates this muscle enzyme.

For this purpose, they performed a cDNA expression screen of a human skeletal muscle cDNA library comprising 250,000 individual cDNA expression plasmids, hoping to find new transcription factors amenable to regulate MuRF1 in muscle. And they found what they were looking for – the transcription factor EB (TFEB). It binds to special regulators in the MuRF1 gene and thereby induces the production of this muscle enzyme. The researchers showed that TFEB increases the expression of MuRF1 in muscle cells seventyfold. TFEB is thus the strongest activator of MuRF1 expression known up to now and a key constituent of muscle atrophy.

But there are other key elements in this complex regulation pathway which is ultimately triggered by angiotensin II. The activity of such an important transcription factor as TFEB must be held in check by a fine-tuned network of proteins, and it was just this network regulating TFEB activity that the researchers identified and described in detail.

One of these regulatory proteins is the enzyme HDAC5. It inhibits the activity of the transcription factor TFEB. As a result, less MuRF1 is generated, thereby reducing the loss of muscle mass. The second enzyme, the protein kinase D1, which is activated by angiotensin II and then migrates into the cell nucleus, mediates the export of the protective enzyme HDAC5 from the cell nucleus and thus activates TFEB expression. This leads to increased formation of MuRF1 and induces the degradation of the muscle protein.

The protein kinase D1 is hence another villain in this process which the researchers studied both in muscle cell cultures and in mice. “With our detailed knowledge of this new signaling pathway and various potential targets, we hope to prevent skeletal muscle atrophy in patients with advanced congestive heart failure,” said Dr. Fielitz.

*Circulation Research, doi: 10.1161/CIRCRESAHA.114.305393

Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression
Philipp Du Bois1, Cristina Pablo Tortola1, Doerte Lodka1, Melanie Kny1, Franziska Schmidt1, Kunhua Song2,3, Sibylle Schmidt1, Rhonda Bassel-Duby3, Eric N. Olson3, Jens Fielitz1
1Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité - Universitätsmedizin Berlin, Campus Buch, Berlin, Germany; 2Current address: University of Colorado, Anschutz Medical Campus, Denver, USA, and; 3Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>