Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skeletal Muscle Atrophy in Heart Failure – MDC and Charité Researchers Elucidate Mechanism

12.08.2015

It is a paradox: Patients with advanced congestive heart failure lose skeletal muscle mass, but their heart muscles become enlarged to provide the body with an adequate supply of blood and thus with oxygen. It has long been known that the protein angiotensin II plays a villainous role in this process. Now Dr. Philipp Du Bois and the cardiologist PD Dr. Jens Fielitz of the Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and the Charité – Universitätsmedizin Berlin, and Professor Eric N. Olson (University of Texas Southwestern Medical Center, Dallas, Texas, USA) have elucidated the process and identified new therapeutic targets (Circulation Research)*.

Congestive heart failure is one of the leading causes of death in industrialized countries. The disease has various causes, including high blood pressure, coronary artery disease, diabetes, obesity and age. “Thanks to improved medical care, we can now provide effective treatment for patients with heart failure and can improve their prognosis, i.e. extend their survival time.

However, this also means that we increasingly have patients in the advanced stage of the disease. They lose a lot of weight, which worsens their condition and becomes life threatening. This is mainly caused by the wasting of skeletal muscles, also called skeletal muscle atrophy, which leads to decreased muscle strength. Unfortunately, we are not able to successfully treat this concomitant disease,” said Dr. Fielitz. The cardiologist from the Virchow Clinic of the Charité heads the independent research group “Protein Regulation in Heart and Skeletal Muscle” at the ECRC in Berlin-Buch.

Angiotensin II induces muscle atrophy
From previous studies, it was known that the activation of the renin-angiotensin system (RAAS) in patients with heart failure leads to the wasting of skeletal muscles. This intricate system of hormones and enzymes normally regulates the water and salt balance of the body as well as blood pressure. Patients with heart failure have elevated levels of one of the players of this system in the blood, angiotensin II.

It was also known that angiotensin II was the villain that induced muscle atrophy. Angiotensin II activates the ubiquitin proteasome system (UPS), the body’s cellular shredding machine, to degrade proteins by forming a muscle enzyme to act as a switch. As soon as the muscle enzyme MuRF1 is activated, the UPS machinery degrades muscle proteins in the patients, causing the muscles to become thinner and weaker.

If the patients are administered an ACE inhibitor, the wasting of the skeletal muscles is reduced. ACE inhibitors block the formation of angiotensin II and are conventionally used in the treatment of heart failure patients. “Although ACE inhibitors are effective, they cannot completely halt the muscle wasting process. Often, after five to ten years, the treatment fails fails,” said Dr. Fielitz, explaining the problem.

New regulator and signaling pathway discovered
Moreover, the exact signaling pathway through which angiotensin II increases the formation of MuRF1 was hitherto not completely understood. But a full understanding is essential for finding new approaches to improved therapy. Dr. Fielitz and his colleagues therefore sought to find out exactly how angiotensin II increases the formation of MuRF1 in muscle cells and which signaling pathway regulates this muscle enzyme.

For this purpose, they performed a cDNA expression screen of a human skeletal muscle cDNA library comprising 250,000 individual cDNA expression plasmids, hoping to find new transcription factors amenable to regulate MuRF1 in muscle. And they found what they were looking for – the transcription factor EB (TFEB). It binds to special regulators in the MuRF1 gene and thereby induces the production of this muscle enzyme. The researchers showed that TFEB increases the expression of MuRF1 in muscle cells seventyfold. TFEB is thus the strongest activator of MuRF1 expression known up to now and a key constituent of muscle atrophy.

But there are other key elements in this complex regulation pathway which is ultimately triggered by angiotensin II. The activity of such an important transcription factor as TFEB must be held in check by a fine-tuned network of proteins, and it was just this network regulating TFEB activity that the researchers identified and described in detail.

One of these regulatory proteins is the enzyme HDAC5. It inhibits the activity of the transcription factor TFEB. As a result, less MuRF1 is generated, thereby reducing the loss of muscle mass. The second enzyme, the protein kinase D1, which is activated by angiotensin II and then migrates into the cell nucleus, mediates the export of the protective enzyme HDAC5 from the cell nucleus and thus activates TFEB expression. This leads to increased formation of MuRF1 and induces the degradation of the muscle protein.

The protein kinase D1 is hence another villain in this process which the researchers studied both in muscle cell cultures and in mice. “With our detailed knowledge of this new signaling pathway and various potential targets, we hope to prevent skeletal muscle atrophy in patients with advanced congestive heart failure,” said Dr. Fielitz.

*Circulation Research, doi: 10.1161/CIRCRESAHA.114.305393

Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression
Philipp Du Bois1, Cristina Pablo Tortola1, Doerte Lodka1, Melanie Kny1, Franziska Schmidt1, Kunhua Song2,3, Sibylle Schmidt1, Rhonda Bassel-Duby3, Eric N. Olson3, Jens Fielitz1
1Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité - Universitätsmedizin Berlin, Campus Buch, Berlin, Germany; 2Current address: University of Colorado, Anschutz Medical Campus, Denver, USA, and; 3Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>