Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skeletal Muscle Atrophy in Heart Failure – MDC and Charité Researchers Elucidate Mechanism

12.08.2015

It is a paradox: Patients with advanced congestive heart failure lose skeletal muscle mass, but their heart muscles become enlarged to provide the body with an adequate supply of blood and thus with oxygen. It has long been known that the protein angiotensin II plays a villainous role in this process. Now Dr. Philipp Du Bois and the cardiologist PD Dr. Jens Fielitz of the Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and the Charité – Universitätsmedizin Berlin, and Professor Eric N. Olson (University of Texas Southwestern Medical Center, Dallas, Texas, USA) have elucidated the process and identified new therapeutic targets (Circulation Research)*.

Congestive heart failure is one of the leading causes of death in industrialized countries. The disease has various causes, including high blood pressure, coronary artery disease, diabetes, obesity and age. “Thanks to improved medical care, we can now provide effective treatment for patients with heart failure and can improve their prognosis, i.e. extend their survival time.

However, this also means that we increasingly have patients in the advanced stage of the disease. They lose a lot of weight, which worsens their condition and becomes life threatening. This is mainly caused by the wasting of skeletal muscles, also called skeletal muscle atrophy, which leads to decreased muscle strength. Unfortunately, we are not able to successfully treat this concomitant disease,” said Dr. Fielitz. The cardiologist from the Virchow Clinic of the Charité heads the independent research group “Protein Regulation in Heart and Skeletal Muscle” at the ECRC in Berlin-Buch.

Angiotensin II induces muscle atrophy
From previous studies, it was known that the activation of the renin-angiotensin system (RAAS) in patients with heart failure leads to the wasting of skeletal muscles. This intricate system of hormones and enzymes normally regulates the water and salt balance of the body as well as blood pressure. Patients with heart failure have elevated levels of one of the players of this system in the blood, angiotensin II.

It was also known that angiotensin II was the villain that induced muscle atrophy. Angiotensin II activates the ubiquitin proteasome system (UPS), the body’s cellular shredding machine, to degrade proteins by forming a muscle enzyme to act as a switch. As soon as the muscle enzyme MuRF1 is activated, the UPS machinery degrades muscle proteins in the patients, causing the muscles to become thinner and weaker.

If the patients are administered an ACE inhibitor, the wasting of the skeletal muscles is reduced. ACE inhibitors block the formation of angiotensin II and are conventionally used in the treatment of heart failure patients. “Although ACE inhibitors are effective, they cannot completely halt the muscle wasting process. Often, after five to ten years, the treatment fails fails,” said Dr. Fielitz, explaining the problem.

New regulator and signaling pathway discovered
Moreover, the exact signaling pathway through which angiotensin II increases the formation of MuRF1 was hitherto not completely understood. But a full understanding is essential for finding new approaches to improved therapy. Dr. Fielitz and his colleagues therefore sought to find out exactly how angiotensin II increases the formation of MuRF1 in muscle cells and which signaling pathway regulates this muscle enzyme.

For this purpose, they performed a cDNA expression screen of a human skeletal muscle cDNA library comprising 250,000 individual cDNA expression plasmids, hoping to find new transcription factors amenable to regulate MuRF1 in muscle. And they found what they were looking for – the transcription factor EB (TFEB). It binds to special regulators in the MuRF1 gene and thereby induces the production of this muscle enzyme. The researchers showed that TFEB increases the expression of MuRF1 in muscle cells seventyfold. TFEB is thus the strongest activator of MuRF1 expression known up to now and a key constituent of muscle atrophy.

But there are other key elements in this complex regulation pathway which is ultimately triggered by angiotensin II. The activity of such an important transcription factor as TFEB must be held in check by a fine-tuned network of proteins, and it was just this network regulating TFEB activity that the researchers identified and described in detail.

One of these regulatory proteins is the enzyme HDAC5. It inhibits the activity of the transcription factor TFEB. As a result, less MuRF1 is generated, thereby reducing the loss of muscle mass. The second enzyme, the protein kinase D1, which is activated by angiotensin II and then migrates into the cell nucleus, mediates the export of the protective enzyme HDAC5 from the cell nucleus and thus activates TFEB expression. This leads to increased formation of MuRF1 and induces the degradation of the muscle protein.

The protein kinase D1 is hence another villain in this process which the researchers studied both in muscle cell cultures and in mice. “With our detailed knowledge of this new signaling pathway and various potential targets, we hope to prevent skeletal muscle atrophy in patients with advanced congestive heart failure,” said Dr. Fielitz.

*Circulation Research, doi: 10.1161/CIRCRESAHA.114.305393

Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression
Philipp Du Bois1, Cristina Pablo Tortola1, Doerte Lodka1, Melanie Kny1, Franziska Schmidt1, Kunhua Song2,3, Sibylle Schmidt1, Rhonda Bassel-Duby3, Eric N. Olson3, Jens Fielitz1
1Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité - Universitätsmedizin Berlin, Campus Buch, Berlin, Germany; 2Current address: University of Colorado, Anschutz Medical Campus, Denver, USA, and; 3Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>