Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sizing up cells: Study finds possible regulator of growth

03.03.2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers may have found the key in a dynamic agglomeration of molecules inside cells.

This structure is called the nucleolus, a part of the cell typically found under a microscope in groups of small black specks, like poppy seeds in a muffin. The primary function of the nucleolus is to make ribosomes, molecular machines that are crucial to cell growth. The Princeton research team asked a simple question about the nucleolus: do these ribosome factories get bigger as cells that contain them get bigger?


These are C. Elegans cells used in the research.

Credit: Brangwynne and Weber

"We thought: does the nucleolus' assembly and function depend on the size of the cell?" said Clifford Brangwynne, the lead researcher and an assistant professor of chemical and biological engineering at Princeton. "If this were true, then it could provide a feedback mechanism for regulating cell growth."

The limit of cellular growth and how cells "choose" their eventual size have long been open questions for biologists. Cells with a common function - muscular, neural, etc. - form a uniform size, but how they do so has been unknown. The mechanism by which cells perform this function, and ways in which it goes wrong, also play an important role in many types of disease, including various forms of cancer.

"It's well known that the nucleolus drives cell growth," Brangwynne said. "Is it possible that there are simple biophysical rules that directly link the nucleolus and its functions to cell size - allowing the nucleolus to 'know' the size of a cell."

The nucleolus is one of a number of assemblies inside a cell called organelles; these structures function like organs do in the human body. More specifically, the nucleolus is known as an RNA/protein body - a class of organelle that has no defined boundary that separates it from the surrounding liquid protoplasm. In earlier research, Brangwynne discovered that these structures behave like viscous liquid droplets -- like a drop of oil in water. Brangwynne's work on several RNA/protein bodies suggests that these liquid-like structures assemble through a phase transition -- the same type of mechanism that causes dew drops to condense on blade of grass.

The group's earlier work led them to consider whether a higher concentration of cellular matter would more easily lead to the phase transition that assembles nucleoli. If so, that could regulate cell size: a small cell with a high concentration of matter would easily assemble nucleoli, but once a cell grew too large, spreading out its material, nucleoli would disassemble and the cell would stop growing.

"It's like making rock candy from a sugar solution," Brangwynne said. "If you dilute the solution too much, the candy won't grow in the solution."

Brangwynne and Stephanie Weber, a post-doctoral researcher in the lab, tested the hypothesis through a series of experiments using embryos of a type of worm called a nematode. In an article published online Feb. 19 in the journal Current Biology, the researchers detail how they used a technique called RNA interference (RNAi), to increase or decrease the size of the cells, and then examined the effect on the assembly of nucleoli.

"We took advantage of some useful features of the worm that allowed us to change the concentration of all of the nucleolar components by just changing cell size", Weber said.

The team was able to derive a mathematical model based on the physics of phase transitions, which explain this size variation. In the model, they show that the assembly and size of nucleoli depend on two factors: the first is the concentration of cellular material (which is related to cell size) the second is the energy of interactions between the molecules in the cell, which determines the saturating concentration for the phase transition. The model explains why nucleoli do not assemble in some cells, and why they grow to larger or smaller sizes in other cells.

Support for the project was provided in part by the National Institutes of Health, the Searle Scholars Program, the National Science Foundation, and a Damon Runyon Postdoctoral Fellowship.

Brangwynne said the conclusion raises the possibility that phase transition-driven assembly of the nucleolus limits cell growth -- when the cell is relatively small, nucleoli easily assemble and produce enough ribosomes for cell growth; but when the cell grows larger, it becomes harder to produce enough ribosomes and cell growth tapers.

Brangwynne is working to directly test this idea. "We've developed some exciting new technology that allows us to precisely measure the dynamics of worm growth, and we're now using it to test whether the rate at which nucleoli produce ribosomes is directly impacted by the biophysical link to cell size that we've uncovered."

Media Contact

John Sullivan
js29@princeton.edu
609-258-4597

 @eprinceton

http://engineering.princeton.edu/ 

John Sullivan | EurekAlert!

More articles from Life Sciences:

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

nachricht How the kidneys produce concentrated urine
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>