Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Molecule Detection Machine for Nucleic Acid Analytics

07.09.2015

Fraunhofer FIT will present a Single Molecule Detection Machine for the analysis of ultra-small amounts of nucleic acid. The system can be used to identify biomarkers that are early indicators of a disease or allow forecasting the response to a therapy. Fraunhofer FIT will also demonstrate their ZETA imaging software that is used in drug research.

Supersensitive detection systems are becoming an important element of today's Life Sciences. Their development aims to achieve utmost sensitivity and smallest possible sample consumption in detecting and determining the amount of bio molecules, in order to be able to diagnose diseases earlier, to find new active ingredients faster and more reliably, to prove the presence of environmental pollutants, or to control the quality of biological processes.

Fraunhofer FIT researchers now present a Single Molecule Detection Machine (SMDM) developed especially for these application fields. It uses a highly sensitive confocal microscope, also developed by Fraunhofer FIT, and fluorescence detection.

Fluorescent markers are attached to bio molecules, e.g., DNA, RNA and proteins; a laser is used to induce fluorescence. This detection mode is not only highly sensitive, but it can also produce a wide range of information about the type and behavior of the marked bio molecules.

»It took us several years of R&D to find our method of analysis, which is based on single molecule brightness levels, and to turn it into an algorithm. The resulting process now lets us generate the information we need about the molecule faster and with higher precision«, says Prof. Harald Mathis, head of the BioMOS group at the Fraunhofer Institute for Applied Information Technology FIT, and also of the Fraunhofer SYMILA Application Center at Hamm-Lippstadt.

The smallest molecule concentration detectable by the SMDM is an unimaginably low 1 pg/µl (one trillionth of a gram per one millionth of a liter). By way of comparison: The system can detect that one cube of sugar was dissolved in three million liters water, roughly the amount of water contained in 1.2 Olympic swimming pools each 50 m long, 25 m wide and 2 m deep. One cubic millimeter of this water would be enough to carry out the test.

In the Ribolution project, funded by Fraunhofer Zukunftsstiftung, we are currently using the SMDM for quality control in nucleic acid analytics, specifically to determine the mass concentration of nucleic acids with high sensitivity.

Actually, the sensitivity we achieve is several orders of magnitude higher than competing systems using UV absorption. In addition, our system performs its measurements on sample volumes of <1µl (less than one millionth of a liter), thus reducing costs by minimizing sample consumption. Currently, we can quantify DNA as well as RNA mixtures in concentrations ranging from 1 to 1,000 pg µl-1.

The SMDM is also capable of measuring, with high sensitivity, the lengths of strands in nucleic acid mixtures. To determine distributions of lengths of strands precisely we developed an Open Micro-Electrophoresis Chip (OMEC) and integrated it with the SMDM. This chip allows us separate molecules for the analysis at the single molecule level.

Our second exhibit at BIOTECHNICA 2015 is our ZETA imaging software. We developed it specifically for the High Content Analysis of live cell imaging data, where cells are monitored and recorded over their full life cycle. Due to its open interfaces, ZETA can easily be integrated with complete High Content Analysis workflows and thus can support researchers in a wide range of applications in drug research.

Alex Deeg | Fraunhofer-Institut für Angewandte Informationstechnik FIT
Further information:
http://www.fit.fraunhofer.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>