Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Molecule Detection Machine for Nucleic Acid Analytics

07.09.2015

Fraunhofer FIT will present a Single Molecule Detection Machine for the analysis of ultra-small amounts of nucleic acid. The system can be used to identify biomarkers that are early indicators of a disease or allow forecasting the response to a therapy. Fraunhofer FIT will also demonstrate their ZETA imaging software that is used in drug research.

Supersensitive detection systems are becoming an important element of today's Life Sciences. Their development aims to achieve utmost sensitivity and smallest possible sample consumption in detecting and determining the amount of bio molecules, in order to be able to diagnose diseases earlier, to find new active ingredients faster and more reliably, to prove the presence of environmental pollutants, or to control the quality of biological processes.

Fraunhofer FIT researchers now present a Single Molecule Detection Machine (SMDM) developed especially for these application fields. It uses a highly sensitive confocal microscope, also developed by Fraunhofer FIT, and fluorescence detection.

Fluorescent markers are attached to bio molecules, e.g., DNA, RNA and proteins; a laser is used to induce fluorescence. This detection mode is not only highly sensitive, but it can also produce a wide range of information about the type and behavior of the marked bio molecules.

»It took us several years of R&D to find our method of analysis, which is based on single molecule brightness levels, and to turn it into an algorithm. The resulting process now lets us generate the information we need about the molecule faster and with higher precision«, says Prof. Harald Mathis, head of the BioMOS group at the Fraunhofer Institute for Applied Information Technology FIT, and also of the Fraunhofer SYMILA Application Center at Hamm-Lippstadt.

The smallest molecule concentration detectable by the SMDM is an unimaginably low 1 pg/µl (one trillionth of a gram per one millionth of a liter). By way of comparison: The system can detect that one cube of sugar was dissolved in three million liters water, roughly the amount of water contained in 1.2 Olympic swimming pools each 50 m long, 25 m wide and 2 m deep. One cubic millimeter of this water would be enough to carry out the test.

In the Ribolution project, funded by Fraunhofer Zukunftsstiftung, we are currently using the SMDM for quality control in nucleic acid analytics, specifically to determine the mass concentration of nucleic acids with high sensitivity.

Actually, the sensitivity we achieve is several orders of magnitude higher than competing systems using UV absorption. In addition, our system performs its measurements on sample volumes of <1µl (less than one millionth of a liter), thus reducing costs by minimizing sample consumption. Currently, we can quantify DNA as well as RNA mixtures in concentrations ranging from 1 to 1,000 pg µl-1.

The SMDM is also capable of measuring, with high sensitivity, the lengths of strands in nucleic acid mixtures. To determine distributions of lengths of strands precisely we developed an Open Micro-Electrophoresis Chip (OMEC) and integrated it with the SMDM. This chip allows us separate molecules for the analysis at the single molecule level.

Our second exhibit at BIOTECHNICA 2015 is our ZETA imaging software. We developed it specifically for the High Content Analysis of live cell imaging data, where cells are monitored and recorded over their full life cycle. Due to its open interfaces, ZETA can easily be integrated with complete High Content Analysis workflows and thus can support researchers in a wide range of applications in drug research.

Alex Deeg | Fraunhofer-Institut für Angewandte Informationstechnik FIT
Further information:
http://www.fit.fraunhofer.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>