Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecular switch may contribute to major aging-related diseases

13.11.2014

Blocking effects of nitric oxide on SIRT1 protein could disrupt inflammation associated with diabetes, atherosclerosis, Parkinson's disease

A study led by Massachusetts General Hospital (MGH) investigators has identified what appears to be a molecular switch controlling inflammatory processes involved in conditions ranging from muscle atrophy to Alzheimer's disease.

In their report published in Science Signaling, the research team found that the action of the signaling molecule nitric oxide on the regulatory protein SIRT1 is required for the induction of inflammation and cell death in cellular and animal models of several aging-related disorders.

"Since different pathological mechanisms have been identified for diseases like type 2 diabetes, atherosclerosis and Parkinson's disease, it has been assumed that therapeutic strategies for those conditions should also differ," says Masao Kaneki, MD, PhD, MGH Department of Anesthesia, Critical Care and Pain Medicine, senior author of the paper. "In contrast, our findings identified nitric oxide-mediated inactivation of SIRT1 - believed to be a longevity gene - as a hub of the inflammatory spiral common to many aging-related diseases, clarifying a new preventive molecular target."

Studies have implicated a role for nitric oxide in diabetes, neurodegeneration, atherosclerosis and other aging-related disorders known to involve chronic inflammation. But exactly how nitric oxide exerts those effects - including activation of the inflammatory factor NF-kappaB and the regulatory protein p53, which can induce the death of damaged cells - was not known. SIRT1 is known to suppress the activity of both NF-kappaB and p53, and since its dysregulation has been associated with models of several aging-related conditions, the research team focused on nitric oxide's suppression of SIRT1 through a process called S-nitrosylation.

Cellular experiments revealed that S-nitrosylation inactivates SIRT1 by interfering with the protein's ability to bind zinc, which in turn increases the activation of p53 and of a protein subunit of NF-kappaB. Experiments in mouse models of systemic inflammation, age-related muscle atrophy and Parkinson's disease found that blocking or knocking out NO synthase - the enzyme that induces nitric oxide generation - prevented the cellular and in the Parkinson's model behavioral effects of the diseases. Additional experiments pinpointed the S-nitrosylation of SIRT1 as a critical point in the chain of events leading from nitric oxide expression to cellular damage and death.

"Regardless of the original event that set off this process, once turned on by SIRT1 inactivation, the same cascade of enhanced inflammation and cell death leads to many different disorders," says Kaneki, an associate professor of Anaesthesia at Harvard Medical School. "While we need to confirm that what we found in rodent models operates in human diseases, I believe this process plays an important role in the pathogenesis of conditions including obesity-related diabetes, atherosclerosis, Alzheimer's disease and the body's response to major trauma. We're now trying to identify small molecules that will specifically inhibit S-nitrosylation of SIRT1 and related proteins and suppress this proinflammatory switch."

The co-lead authors of the Science Signaling paper are Shohei Shinozaki, PhD, Tokyo Medical and Dental University, and Kyungho Chang, MD, PhD, University of Tokyo School of Medicine, both of whom previously were research fellows at MGH. Additional co-authors include Michihiro Sakai, Nobuyuki Shimizu, Marina Yamada, Tomokazu Tanaka, MD, PhD, Harumasa Nakazawa, MD and Fumito Ichinose, MD, PhD, all of the MGH Department of Anesthesia, Critical Care and Pain Medicine; and Jonathan S. Stamler, MD, Case Western Reserve University and University Hospital, Cleveland.

Support for the study includes National Institutes of Health grants R01-DK-058127, R01-GM-099921, 5P01-HL-075443-08 and R01-AG-039732; Defense Advanced Research Project Agency grant N66001-13-C-4054; American Diabetes Association grant 7-08-RA-77, and grants from Shriners Hospitals for Children.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>