Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015

New generation of catalysts demonstrated for selective hydrogenation of butadiene

A new generation of platinum-copper catalysts that require very low concentrations of platinum in the form of individual atoms to cleanly and cheaply perform important chemical reactions is reported today by Tufts University researchers in the journal Nature Communications.


Atomic-resolution microscopy shows the single platinum atoms on copper nanoparticles that can split hydrogen into atoms enabling the efficient and selective hydrogenation of butadiene.

Credit: Tufts University

Platinum is used as a catalyst in fuel cells, in automobile converters and in the chemical industry because of its remarkable ability to facilitate a wide range of chemical reactions. However, its future potential uses are significantly limited by scarcity and cost, as well as the fact that platinum readily binds with carbon monoxide, which "poisons" the desired reactions, for example in polymer electrolyte membrane (PEM) fuel cells, which are the leading contenders for small-scale and mobile power generation not based on batteries or combustion engines.

The Tufts researchers discovered that dispersing individual, isolated platinum atoms in much less costly copper surfaces can create a highly effective and cost-efficient catalyst for the selective hydrogenation of 1,3 butadiene, a chemical produced by steam cracking of naphtha or by catalytic cracking of gas oil. Butadiene is an impurity in propene streams that must be removed from the stream through hydrogenation in order to facilitate downstream polymer production. The current industrial catalyst for butadiene hydrogenation uses palladium and silver.

Like Sugar in Coffee

Copper, while a relatively cheap metal, is not nearly as catalytically powerful as platinum, noted Professor of Chemistry Charles Sykes, Ph.D., one of the senior authors on the paper. "We wanted to find a way to improve its performance."

The researchers first conducted surface science experiments to study precisely how platinum and copper metals mix. "We were excited to find that the platinum metal dissolved in copper, just like sugar in hot coffee, all the way down to single atoms. We call such materials single atom alloys," said Sykes.

The Tufts chemists used a specialized low temperature scanning tunneling microscope to visualize the single platinum atoms and their interaction with hydrogen. "We found that even at temperatures as low as minus 300 degrees F these platinum atoms were capable of splitting hydrogen molecules into atoms, indicating that the platinum atoms would be very good at activating hydrogen for a chemical reaction," Sykes said.

With that knowledge, Sykes and his fellow chemists turned to long-time Tufts collaborator Maria Flytzani-Stephanopoulos, Ph.D., the Robert and Marcy Haber Endowed Professor in Energy Sustainability at the School of Engineering, to determine which hydrogenation reaction would be most significant for industrial applications. The answer, she said, was butadiene.

The model catalyst performed effectively for that reaction in vacuum conditions in the laboratory, so Flytzani-Stephanopoulos's team took the study to the next level. They synthesized small quantities of realistic catalysts, such as platinum-copper single atom alloy nanoparticles supported on an alumina substrate, and then tested them under industrial pressure and temperatures.

"To our delight, these catalysts worked very well and their performance was steady for many days," said Flytzani-Stephanopoulos. "While we had previously shown that palladium would do related reactions in a closed reactor system, this work with platinum is our first demonstration of operation in a flow reactor at industrially relevant conditions. We believe this approach is also applicable to other precious metals if added as minority components in copper."

Further, the researchers found that the reaction actually became less efficient when they used more platinum, because clusters of platinum atoms have inferior selectivity compared with individual atoms. "In this case, less is more," said Flytzani-Stephanopoulos, "which is a very good thing."

Environmental Benefits

Because platinum is at the center of many clean energy and green chemicals production technologies, such as fuel cells, catalytic converters, and value-added chemicals from bio-renewable feedstocks, the new, less expensive platinum-copper catalysts could facilitate broader adoption of such environmentally friendly devices and processes, she added.

The work is the latest fruit from a long cross-disciplinary partnership between Sykes and Flytzani-Stephanopoulos.

"Maria and I met more than seven years ago and talked regularly about how to combine our fairly different fields of research into an effective collaboration across the schools of Arts and Sciences and Engineering," said Sykes. "I had a state-of-the-art microscope that could see and manipulate atoms and molecules, and I wanted to use its unique capabilities to gain insight into industrially important chemical reactions. In the early 2000s, Maria's group had pioneered the single-atom approach for metals anchored on oxide supports as the exclusive active sites for the water-gas shift reaction to upgrade hydrogen streams for fuel cell use. Catalyst design know-how already existed in her lab. In retrospect, it seems obvious that combining forces would be a 'natural' development. Together we embarked on a new direction involving single atom alloys as catalysts for selective hydrogenation reactions. Our microscope was uniquely suited for characterizing the atomic composition of surfaces. We got funding from the National Science Foundation, U.S. Department of Energy and the Tufts Collaborates initiative to pursue this new area of research."

Sykes and Flytzani-Stephanopoulos have used this approach to design a variety of single atom alloy catalysts that have, in the last two years, sparked international interest.

"Traditionally catalyst development happens by trial and error and screening many materials," said Flytzani-Stephanopoulos. "In this study we took a fundamental approach to understanding the atomic scale structure and properties of single atom alloy surfaces and then applied this knowledge to develop a working catalyst. Armed with this knowledge, we are now ready to compare the stability of these single atom alloy catalysts to single atom catalysts supported on various oxide or carbon surfaces. This may give us very useful criteria for industrial catalyst design."

###

The research was primarily performed by co-authors Felicia R. Lucci and Jilei Liu, senior graduate students in the Sykes and Stephanopoulos labs, respectively. Other authors on the paper are doctoral students Matthew D. Marcinkowski (chemistry) and Ming Yang (chemical engineering), and Lawrence F. Allard, Ph.D., of the Materials Science & Technology Division, Oak Ridge National Laboratory, who led the state of the art imaging of the catalytic samples.

Funding for this work came from the Department of Energy, grant DE-FG02-05ER15730, and the National Science Foundation, grant CBET-1159882.

"Selective hydrogenation of butadiene on platinum copper alloys at the single atom limit," Nature Communications, DOI: 10.1038/NCOMMS9550.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoy a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Kim Thurler
kim.thurler@tufts.edu
617-627-3175

 @TuftsUniversity

http://www.tufts.edu 

Kim Thurler | EurekAlert!

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>