Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore scientists discover molecular cell cycle clock that controls stem cell potency

07.08.2015

Findings on cell differentiation controls can advance understanding of stem cells.

Singapore scientists from A*STAR’s Genome Institute of Singapore (GIS) have, for the first time, found further evidence of how the differentiation of pluripotent cells is tied to and controlled by the cell cycle clock. This deeper understanding of how cells become differentiated is extremely important when considering therapeutic potentials.


Human ESCs with fluorescence reporters aid the discovery of novel regulators of stem cell potency.

Copyright : A*STAR

Embryonic stem cells (ESCs) are cells that have not differentiated into specific cell types, and are said to be in a pluripotent state. The cell cycle is divided into four phases: G1, S, G2 and M[1]. Previous studies have shown that cell differentiation of ESCs is initiated only in the G1 phase, attributed to G1-specific properties that contribute to lineage specification. The absence of these properties in the other three phases was believed to passively hinder differentiation.

This study, using high-throughput screening, provides the first evidence that during the S and G2 phases, the ESCs are more potent towards maintaining its stemness; that is, they actively resist differentiation.

Additionally, the scientists found that in instances of DNA damage, ESCs do not differentiate, so as to prevent the formation of specialised (differentiated) cells with compromised genomic integrity.

Findings from the study were published in the scientific journal Cell.

“Many studies have been devoted to looking at what keeps the ESCs in their undifferentiated state. Hence, to address a gap in the understanding of cell differentiation, our team at the GIS decided to focus on what regulates the ESCs’ exit from their pluripotent state,” said lead author of the research, Dr Kevin Gonzales, Post Doctoral Fellow at the Stem Cell and Regenerative Biology at GIS. “Moreover, most functional screens are carried out in mouse ESCs. The only functional screen on human ESCs was published in 2010 from our laboratory at the GIS. This latest study was also performed on human ESCs, making it more clinically relevant than studies using mouse ESCs.”

Co-lead author Research Fellow Dr Liang Hongqing at GIS’ Stem Cell and Regenerative Biology added, “Our research has shifted the current paradigm from a G1-phase centric view in stem cell regulation to a balanced view that different cell cycle phases perform different roles to orchestrate the stem cell fate.”

GIS Executive Director Prof Ng Huck Hui said, “Knowing that the S and G2 phases employ active pathways to prevent differentiation of ESCs, we can propose that, conversely, the absence of these pathways contributes to G1 phase amenability towards differentiation. This is truly an exciting and huge step forward in the study of cell pluripotency to advance fundamental understanding of human stem cells.”

[1] Cell cycle stages: (a) G1, first gap phase in preparation for DNA replication (G1); (b) S, DNA replication phase; (c) G2, second gap phase in preparation for cell division; (d) M, mitosis [cell division] phase.

Associated links
A*STAR press release

A*STAR Research | ResearchSea
Further information:
http://www.researchsea.com

Further reports about: Cell DNA DNA replication G2 Regenerative Biology cell cycle pluripotent

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>