Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating complex catalysts key to making cheap, powerful fuel cells

10.08.2016

Using a unique combination of advanced computational methods, University of Wisconsin-Madison chemical engineers have demystified some of the complex catalytic chemistry in fuel cells -- an advance that brings cost-effective fuel cells closer to reality.

"Understanding reaction mechanisms is the first step toward eventually replacing expensive platinum in fuel cells with a cheaper material," says Manos Mavrikakis, a UW-Madison professor of chemical and biological engineering.


Modeling how methanol interacts with platinum catalysts inside fuel cells in realistic environments becomes even more complicated because distances between the atoms can change as molecules dance near the charged surface.

Credit: Manos Mavrikakis

Mavrikakis and colleagues at Osaka University in Japan published details of the advance Monday, Aug. 8, in the journal Proceedings of the National Academy of Sciences.

Fuel cells generate electricity by combining electrons and protons -- provided by a chemical fuel such as methanol -- with oxygen from the air. To make the reaction that generates protons faster, fuel cells typically contain catalysts. With the right catalyst and enough fuel and air, fuel cells could provide power very efficiently.

Someday, fuel cells could make laptop batteries obsolete. Mere tablespoons of methanol could potentially provide up to 20 hours of continuous power. But alternatives to the expensive platinum catalyst in today's fuel cells haven't emerged because scientists still don't fully understand the complicated chemistry required to produce protons and electrons from fuels.

And finding a good catalyst is no trivial task.

"People arrived at using platinum for a catalyst largely by trial and error, without understanding how the reaction takes place," says Mavrikakis. "Our efforts developed a big picture of how the reaction is happening, and we hope to do the same analysis with other materials to help find a cheaper alternative."

At first glance, the chemistry sounds straightforward: Methanol molecules awash in a watery milieu settle down on a platinum surface and give up one of their four hydrogen atoms. The movement of those electrons from that hydrogen atom make an electric current.

In reality, the situation is not so simple.

"All of these molecules, the water and the methanol, are actually dancing around the surface of the catalyst and fluctuating continuously," says Mavrikakis. "Following the dynamics of these fluctuating motions all the time, and in the presence of an externally applied electric potential, is really very complicated."

The water molecules are not wallflowers, sitting on the sidelines of the methanol molecules reacting with platinum; rather, they occasionally cut in to the chemical dance. And varying voltage on the electrified surface of the platinum catalyst tangles the reaction's tempo even further.

Previously, chemists only simulated simplified scenarios -- fuel cells without any water in the mix, or catalytic surfaces that didn't crackle with electricity. Unsurprisingly, conclusions based on such oversimplifications failed to fully capture the enormous complexity of real-world reactions.

Mavrikakis and colleagues combined their expertise in two powerful computational techniques to create a more accurate description of a very complex real environment.

They first used density functional theory to solve for quantum mechanical forces and energies between individual atoms, then built a scheme upon those results using molecular dynamics methods to simulate large ensembles of water and methanol molecules interacting among themselves and with the platinum surface.

The detailed simulations revealed that the presence of water in a fuel cell plays a huge role in dictating which hydrogen atom breaks free from methanol first -- a result that simpler methods could never have captured. Electric charge also determined the order in which methanol breaks down, surprisingly switching the preferred first step at the positive electrode.

This type of information enables scientists to predict which byproducts might accumulate in a reaction mixture, and select better ingredients for future fuel cells.

"Modeling enables you to come up with an informed materials design," says Mavrikakis, whose work was supported by the Department of Energy and the National Science Foundation. "We plan to investigate alternative fuels, and a range of promising and cheaper catalytic materials."

The results represent the culmination of six years of effort across two continents. Jeffrey Herron, the first author on the paper, started developing the methodologies during a summer visit to work under the paper's second author, Professor Yoshitada Morikawa in the Division of Precision Science & Technology and Applied Physics at Osaka University.

Herron, who completed his doctorate in 2015 and is now a senior engineer for The Dow Chemical Company, further refined these approaches under Mavrikakis' guidance over several subsequent years in Madison.

"A lot of work over many years went into this paper," says Mavrikakis. "The world needs fuel cells, but without understanding how the reaction takes place, there is no rational way to improve."

###

Sam Million-Weaver, perspective@engr.wisc.edu, 303-885-6375

Manos Mavrikakis | EurekAlert!

Further reports about: Electrons Simulating catalyst electricity hydrogen atom platinum protons

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>