Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Signaling Pathway Suppresses Brain Tumors


Researchers at the University of Basel took a close look at a signaling pathway present in most organisms and found that it suppresses the formation of specific types of brain tumor. Their results have been published by the journal Cancer Cell.

Gliomas are the most common brain tumors in adults and the prognosis for patients is, in many cases, very bad. Therefore, novel and effective therapies for glioma treatment are needed. In order to develop these, it is crucial to understand the biology of this type of tumor.

Cross-section of a murine stem cell-derived brain tumor with histological features strikingly similar to human gliomas. (Image: University of Basel, Claudio Giachino/Verdon Taylor)

Stem cells as potential source of tumors

So far it has been highly debated which brain cells can form gliomas when they acquire gene mutations. However, researchers believe that brain stem cells might be a potential source of this type of cancer. Stem cells in the human brain can generate new nerve cells and, if something goes wrong in this process and uncontrolled proliferation or impaired differentiation occurs, this may lead to the formation of a brain tumor.

A research team led by Professor Verdon Taylor from the Department of Biomedicine at the University of Basel has now studied whether one molecular mechanism that controls normal stem cell maintenance in the brain is hijacked and used by cancer cells during tumor formation.

Active signaling pathway suppresses tumor formation

The researchers studied the so-called Notch pathway. This signaling pathway is central to brain stem cell activity and it has been proposed to – once aberrantly activated – contribute to the growth of gliomas. “In contrast to our expectations, we found that the opposite is the case: when activated, this pathway actually suppresses the formation of some types of glioma”, says Claudio Giachino, first author of the study. Conversely, in some forms of glioma the inactivation of the pathway results in accelerated growth and makes the tumor more aggressive.

Due to these properties, the Notch pathway could, in the future, not only serve as a new therapeutic target but could also be used as a new diagnostic tool in order to get more reliable prognoses for disease progression and patient survival. “Our results demonstrate major differences in the molecular requirements between seemingly similar types of brain tumor and indicate that gliomas must be carefully examined before selecting potentially specific therapeutic interventions in the future”, says Taylor.

Original source
Claudio Giachino, Jean-Louis Boulay, Robert Ivanek, Alvaro Alvarado, Cristobal Tostado, Sebastian Lugert, Jan Tchorz, Mustafa Coban, Luigi Mariani, Bernhard Bettler, Justin Lathia, Stephan Frank, Stefan Pfister, Marcel Kool, and Verdon Taylor
A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes
Cancer Cell (2015), doi: 10.1016/j.ccell.2015.10.008

Further information
Prof. Dr. Verdon Taylor, University of Basel, Department of Biomedicine, phone: +41 61 695 30 91, email:

Weitere Informationen:

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>