Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on the dark proteome with IMB’s newest Adjunct Director

07.12.2017

In a joint appointment with Johannes Gutenberg University Mainz (JGU), the Institute of Molecular Biology, Mainz (IMB) is excited to announce the recruitment of Edward Lemke from EMBL, Heidelberg as an Adjunct Director. Professor Lemke will be continuing his groundbreaking work blending chemistry and single molecule biophysics together to unravel the structure and function of intrinsically disordered proteins (the dark proteome).

One of the first analogies that people learn when studying biology is that the specific interaction of proteins is like a lock and key. The 3D shape of the proteins determines their ability to interact and ensures that only desired interactions occur. But now imagine that your key is flexible and fluid.


Comparison of ridgid and flexible proteins in their binding kinetics. (Top) Proteins with a ridged structure require interactions with binding partners to occur at highly specific sites. Random collisions make such interactions less common and reduce the speed for protein binding. (Bottom) Proteins which, on the other hand, are flexible in their native state can have many more binding sites and these sites are easier to access. This allows them to interact with more binding partners and they do so faster improving, for example, transport across the nuclear envelope.

Source: IMB

Not only is deciphering the key’s shape impossible but it is hard to picture how such a key could ever be specific enough to be useful. The proteins in our cells are, in fact, often like this. It is estimated that up to 50% of the human proteome is comprised of proteins whose structures are fluid and unfolded in their native state. These proteins, known as intrinsically disordered proteins (IDPs), make up the “dark proteome”, as their level of molecular disorder has meant their structure cannot be elucidated with conventional techniques.

In the absence of a 3D structure, understanding the precise mechanism and function of a protein is simply much more difficult. Understanding these proteins is essential as, despite their flexible nature, their interactions can be very specific and crucial in vital cellular processes like nucleocytoplasmic transport, gene regulation and host pathogen interactions.

It is here, in the dark waters of the cell’s interior that Edward Lemke is shining a light, laser light to be specific. Edward has fused his expertise in both chemistry and biophysics to probe the structure and function of these IDPs at the single molecule level. “We develop technologies that permit the manipulation of biomolecules and the custom design of new functionalities into biology using advanced chemical and synthetic biology tools,” he says.

“Combining these technologies with custom designed single molecule probes and super-resolution instrumentation, we have been illuminating unique properties of IDPs that, for example, permit them to specifically but also rapidly shuttle proteins across the nuclear envelope" (see figure).

Following his appointment as Professor at JGU and as Adjunct Director at IMB, Edward’s Lab on “Synthetic Biophysics of Protein Disorder” will be bringing their expertise to Mainz in January 2018. Edward, who received an ERC Consolidator Grant in 2015, will continue to work on optimising the fluorescent labelling techniques he uses; establishing high throughput and microfluidic platforms for single molecule and super-resolution imaging; measuring the interactions of IDPs in real time; and focusing on IDPs that function in nuclear transport.

Image: https://www.imb.de/fileadmin/imb/groups/Lemke/Lemke_proteins_for_press_release.j...
Comparison of ridgid and flexible proteins in their binding kinetics. (Top) Proteins with a ridged structure require interactions with binding partners to occur at highly specific sites. Random collisions make such interactions less common and reduce the speed for protein binding. (Bottom) Proteins which, on the other hand, are flexible in their native state can have many more binding sites and these sites are easier to access. This allows them to interact with more binding partners and they do so faster improving, for example, transport across the nuclear envelope.

Further details
Further information about Edward’s work can be found at https://www.imb.de/research/lemke/research/ or http://www.lemkelab.com

Press contact for further information
Dr Ralf Dahm, Director of Scientific Management
Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
Phone: +49 (0) 6131 39 21455, Fax: +49 (0) 6131 39 21421, Email: press@imb.de

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>