Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on the dark proteome with IMB’s newest Adjunct Director

07.12.2017

In a joint appointment with Johannes Gutenberg University Mainz (JGU), the Institute of Molecular Biology, Mainz (IMB) is excited to announce the recruitment of Edward Lemke from EMBL, Heidelberg as an Adjunct Director. Professor Lemke will be continuing his groundbreaking work blending chemistry and single molecule biophysics together to unravel the structure and function of intrinsically disordered proteins (the dark proteome).

One of the first analogies that people learn when studying biology is that the specific interaction of proteins is like a lock and key. The 3D shape of the proteins determines their ability to interact and ensures that only desired interactions occur. But now imagine that your key is flexible and fluid.


Comparison of ridgid and flexible proteins in their binding kinetics. (Top) Proteins with a ridged structure require interactions with binding partners to occur at highly specific sites. Random collisions make such interactions less common and reduce the speed for protein binding. (Bottom) Proteins which, on the other hand, are flexible in their native state can have many more binding sites and these sites are easier to access. This allows them to interact with more binding partners and they do so faster improving, for example, transport across the nuclear envelope.

Source: IMB

Not only is deciphering the key’s shape impossible but it is hard to picture how such a key could ever be specific enough to be useful. The proteins in our cells are, in fact, often like this. It is estimated that up to 50% of the human proteome is comprised of proteins whose structures are fluid and unfolded in their native state. These proteins, known as intrinsically disordered proteins (IDPs), make up the “dark proteome”, as their level of molecular disorder has meant their structure cannot be elucidated with conventional techniques.

In the absence of a 3D structure, understanding the precise mechanism and function of a protein is simply much more difficult. Understanding these proteins is essential as, despite their flexible nature, their interactions can be very specific and crucial in vital cellular processes like nucleocytoplasmic transport, gene regulation and host pathogen interactions.

It is here, in the dark waters of the cell’s interior that Edward Lemke is shining a light, laser light to be specific. Edward has fused his expertise in both chemistry and biophysics to probe the structure and function of these IDPs at the single molecule level. “We develop technologies that permit the manipulation of biomolecules and the custom design of new functionalities into biology using advanced chemical and synthetic biology tools,” he says.

“Combining these technologies with custom designed single molecule probes and super-resolution instrumentation, we have been illuminating unique properties of IDPs that, for example, permit them to specifically but also rapidly shuttle proteins across the nuclear envelope" (see figure).

Following his appointment as Professor at JGU and as Adjunct Director at IMB, Edward’s Lab on “Synthetic Biophysics of Protein Disorder” will be bringing their expertise to Mainz in January 2018. Edward, who received an ERC Consolidator Grant in 2015, will continue to work on optimising the fluorescent labelling techniques he uses; establishing high throughput and microfluidic platforms for single molecule and super-resolution imaging; measuring the interactions of IDPs in real time; and focusing on IDPs that function in nuclear transport.

Image: https://www.imb.de/fileadmin/imb/groups/Lemke/Lemke_proteins_for_press_release.j...
Comparison of ridgid and flexible proteins in their binding kinetics. (Top) Proteins with a ridged structure require interactions with binding partners to occur at highly specific sites. Random collisions make such interactions less common and reduce the speed for protein binding. (Bottom) Proteins which, on the other hand, are flexible in their native state can have many more binding sites and these sites are easier to access. This allows them to interact with more binding partners and they do so faster improving, for example, transport across the nuclear envelope.

Further details
Further information about Edward’s work can be found at https://www.imb.de/research/lemke/research/ or http://www.lemkelab.com

Press contact for further information
Dr Ralf Dahm, Director of Scientific Management
Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
Phone: +49 (0) 6131 39 21455, Fax: +49 (0) 6131 39 21421, Email: press@imb.de

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>