Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on tapeworms

24.06.2015

Professor Klaus Brehm from Würzburg is granted 750,000 euros for a new research project on tapeworms. His work may bring advances in fighting worm infections, but also in wholly different areas of medicine.

Parasitic worms are a major problem worldwide, especially in developing countries. In tropical regions, for example, several million people are suffering from schistosomiasis. In the course of this infectious disease, worms damage the liver and other organs. They can even cause cancer.


Head of a fox tapeworm: The parasite attaches to the intestinal mucosa of its host by hooks and suckers. Special "kidney cells" that help to drain the head are dyed in green.

(Image: Uriel Koziol)

Millions of people are infected with tapeworms. Particularly dangerous: dog and fox tapeworms. Their larvae form cysts in the tissue of the lung, liver or brain. These cysts proliferate or grow in the body much like tumours to reach a considerable size in some cases. In some species this can cause complications such as blindness and epilepsy, with others it may lead to death.

There have been no vaccines against these pathogens so far and only a very limited repertoire of drugs. Tapeworm cysts, for example, can only be kept in check with a lifelong chemotherapy. Once treatment is stopped, they will simply continue to grow. In Germany, around 50 people are infected with the fox tapeworm each year. This seems little compared to the figures worldwide, however, this is hardly a comfort to those affected.

Wellcome Trust funds research consortium

An international research consortium now wants to find new strategies to combat schistosomiasis and tapeworms. The Wellcome Trust, the UK's largest private funder of biomedical and veterinary research, supports the project: It promotes the "Flatworm Functional Genomics Initiative" with a Strategic Award worth five million euros. The project is set to start in late 2015 to run for five years.

Around 750,000 euros of the grant will be allocated to the team of Professor Klaus Brehm, a tapeworm expert, at the Institute of Hygiene and Microbiology of the University of Würzburg. The money is highly welcome, because: "We are far behind in our knowledge of worm parasites in infection research," as Brehm puts it. He attributes this to the fact that the tapeworm genome was only recently mapped. Moreover, there are no methods available to analyse the worms' genetic functions in the lab. But this would be necessary to find potential targets for drugs or vaccines.

Investigating the worms' genetic functions

After all: The DNA of four tapeworm species was mapped in 2013. Brehm was involved in this work which was equally funded by the Wellcome Trust and was published in the journal "Nature". "Now we have to develop methods to manipulate the worms' genes, because you have to be able to knock out a gene to understand its function."

Brehm designates the venture as a "high-risk project", meaning that it is so ambitious that the scientists could come out without a result after the project term. "But if we are successful, we will considerably advance the research in this field," the Würzburg professor adds.

Perfectly camouflaged to hide from the immune system

The scientists are not only interested in new drugs and vaccines. They see another potential benefit in the tapeworm cysts: These dangerous structures are attached to the human body like perfectly transplanted organs; they cannot be harmed by the immune system.

"How do the worms manage to camouflage themselves so efficiently? Finding the answer to that question could mean progress for organ transplantation," Brehm says. It is conceivable, for example, to disguise transplanted organs accordingly to protect them against the immune system's attack. The treatment of allergies and autoimmune diseases, too, could benefit from a better understanding of the strategies used by the worms to keep the immune system at bay.

The names of the project partners

The FUGI project (Flatworm Functional Genomics Initiative) is led by Professor Karl Hoffmann of the Aberysthwyth University in the UK.

Other partners are Matthew Berriman (Wellcome Trust Sanger Institute, UK), Ludovic Vallier (Cambridge University, UK), Professor Christoph Grunau (University of Perpignan and Centre National de la Recherche Scientifique, France), Professor Klaus Brehm (University of Würzburg, Germany), James Collins (University of Texas Southwestern Medical Center, USA), and Professor Paul Brindley (George Washington University, USA).

Nature publication on the tapeworm genome

“The genomes of four tapeworm species reveal adaptations to parasitism”, Nature 496, 57-63, 4. April 2013, DOI: 10.1038/nature12031

Contact

Prof. Dr. Klaus Brehm, Institut für Hygiene und Mikrobiologie, Universität Würzburg, phone +49 931 31-46168, kbrehm@hygiene.uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>