Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping the future

15.03.2017

Iron nanocubes may be key in the future of NO2 sensing

While nanoparticles sound like a recent discovery, these tiny structures have been used for centuries. The famous Lycurgus cup, made by 4th century Roman artisans, features dichroic glass, with gold and silver nanoparticles sprinkled throughout, producing a green appearance when light is shining on it from the front, and a red appearance when illuminated from behind.


This schematic depicts the production of iron nanocubes using magnetron-sputtering inert-gas condensation and the use of these cubes in NO2 sensors.

Credit: Dr. Panagiotis Grammatikopoulos

In the centuries since the time of the ancient artisans, researchers have come a long way in understanding nanoparticles. The production of nanocubes has been of particular interest due to their potential applications as biosensors and gas sensors.

Nanoparticles can be produced using either physical or chemical methods, though physical methods are advantageous due to the absence of organic contaminants commonly introduced by chemical methods.

However, uniformly sized nanocubes are difficult to produce in sufficient quantities by physical methods. Researchers from the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology (OIST) Graduate University have recently discovered a new approach to overcome this problem. Their research was recently published in Advanced Functional Materials.

"The cube shape is not the lowest energy structure for iron nanoparticles", explains Dr. Jerome Vernieres, first author of the publication, "thus, we couldn't rely on equilibrium thermodynamics considerations to self-assemble these nanocubes". Instead, the OIST scientists, under the guidance of Prof. Mukhles Sowwan, exploited the possibilities offered by a technique called magnetron-sputtering inert-gas condensation to create their iron nanocubes.

With this method, argon gas is first heated up and turned into ionized plasma. Then, a magnet, suitably located behind a target made of the desired material, in this case, iron, controls the shape of the plasma, and ensures that argon ions bombard the target; hence the name "magnetron". As a result, iron atoms are sputtered away from the target, collide with argon atoms and with each other, and form nanoparticles. Accurate control of the plasma via controlling the magnetic field can produce uniform nanocubes. "Uniformity is key in sensing applications. We needed a way to control the size, shape, and number of the nanocubes during their production", explained Dr. Stephan Steinhauer.

To control the size and shape of these cubes, the researchers made a simple but significant observation: iron is magnetic in its own right! In other words, the researchers discovered that they could exploit the intrinsic magnetism of the target itself as an innovative way to modify the magnetic field of the magnetron. This way they managed to manipulate the plasma where the particles are grown, and thus to control the nanocube sizes during formation.

"This is the first time uniform iron nanocubes have been made using a physical method that can be scaled for mass production" clarifies Vernieres. To better understand the mechanics of this process, the OIST team collaborated with researchers from the University of Helsinki to make theoretical calculations. "The work relied heavily on both experimental methods and theoretical calculations. The simulations were important for us to explain the phenomena we were observing", illuminates Dr. Panagiotis Grammatikopoulos.

Once the researchers invented a way to produce these uniform iron cubes, the next step was to build an electronic device that can utilize these nanocubes for sensing applications. "We noticed that these cubes were extremely sensitive to the levels of gaseous NO2. NO2 sensing is used for a variety of different purposes, from diagnosis of asthma patients to detecting environmental pollution, so we immediately saw an application for our work", states Steinhauer.

The researchers from the Nanoparticles by Design Unit, in collaboration with researchers from the Université de Toulouse, then built a prototype NO2 sensor that measured the change in electrical resistance of the iron nanocubes due to exposure to NO2 gas.

Because exposure to even a very tiny amount of NO2 can produce a measurable change in electrical resistance that is considerably larger than for other atmospheric pollutants, the iron nanocube-based sensor is both extremely sensitive and specific. "These nanocubes have many potential uses. The fact that we can produce a relatively large quantity of uniform nanocubes using an increasingly common synthesis method makes this research highly promising for industrial applications," emphasized Vernieres.

Kaoru Natori | EurekAlert!

Further reports about: NO2 Nanoparticles chemical methods magnetic field sensing applications

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>