Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexually-transmitted diseases: do multiple partners mean more immunity?

23.01.2015

It has been assumed that the increased transmission of sexually-transmitted diseases in the case of mating promiscuity is influential in shaping the immune system of mammals. Results published in the scientific journal “Functional Ecology” this week demonstrate that this simple idea does not apply to rodents, and that living circumstances and the environment can be a key factor in determining variation in immune investment among mammals.

It has been assumed that the increased transmission of sexually-transmitted diseases in the case of mating promiscuity is influential in shaping the immune system of mammals. Results published in the scientific journal “Functional Ecology” this week demonstrate that this simple idea does not apply to rodents, and that living circumstances and the environment can be a key factor in determining variation in immune investment among mammals.


A young brown rat (Rattus norvegicus).

Photo: IZW/Jundong Tian

The immune system protects organisms against diseases. Therefore, detecting the factors which shape this system is of great interest to both human and animal medical science. One major question is whether exposure to sexually-transmitted diseases is a main force driving variation in mammalian immunity. Some evidence suggested that this was the case for primates and carnivores and until now was thought to apply to all mammals. Researchers from the German Leibniz Institute for Zoo and Wildlife Research (IZW) have now shown that for rodents, representing 40 % of all living mammal species, this is not the case.

In order to assess the ‘sexually-transmitted diseases’ hypothesis, scientists from the IZW retrieved data from 145 published studies on rodents. They used the number of total white blood cells and their two main components, neutrophils and lymphocytes, as measures of immunity. They quantified the risk of sexually-transmitted diseases by using measures of testes mass, a known predictor of the number of mating partners across species.

The effects of body mass differences and the living circumstances (captive vs. free-ranging) were also taken into consideration in the analyses. The findings demonstrated that large species displayed an increase in the number of immune cells. Also, individuals from captive populations exhibited higher lymphocyte counts than individuals from free-ranging ones. However, testes mass did not vary with immunity, which suggests that sexually-transmitted diseases do not play a major role in shaping the rodent immune system.

“As we know that the prevalence of sexually transmitted pathogens as well as immunological parameters can differ between mammalian groups, pressure by sexually-transmitted diseases may not be the primary determinant of driving immune function in all mammals”, says Jundong Tian, lead author of the study. “Moreover, there is also substantial evidence for effects of captivity upon the physiology of organisms. This suggests that findings derived from captive populations need to be considered very cautiously if we want to understand how evolutionary forces have acted on the immune system over millions of years”, comments Gábor Czirják, principal investigator of the study.

Identifying factors which shape immunity in mammals is likely to ultimately lead to advances in medical treatment. Studies applied to rodents are particularly important in this respect, as mice and rats – key representatives of this mammalian group – continue to serve as a major model animal source for biomedical research.

Publication:
Tian JD, Courtiol A, Schneeberger K, Greenwood AD, Czirják GÁ (2014): Circulating white blood cell counts in captive and wild rodents are influenced by body mass rather than testes mass, a correlate of mating promiscuity. FUNCTIONAL ECOLOGY. Doi:10.1111/1365-2435.12394

Contact:
Jundong Tian, +49 30 5168 227, tian@izw-berlin.de
Gabor Á Czirják , +49 30 5168 214, czirjak@izw-berlin.de
Prof Alex D Greenwood, +49 30 5168 255, greenwood@izw-berlin.de
Steven Seet, +49 30 5168 125, seet@izw-berlin.de

Leibniz Institute for Zoo- and Wildlife Research (IZW)
in Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
GERMANY

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

http://www.izw-berlin.de
https://www.youtube.com/user/izwberlin

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: IZW Wildlife Wildlife Research body mass diseases immune system immunity mammalian species

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>