Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexually-transmitted diseases: do multiple partners mean more immunity?

23.01.2015

It has been assumed that the increased transmission of sexually-transmitted diseases in the case of mating promiscuity is influential in shaping the immune system of mammals. Results published in the scientific journal “Functional Ecology” this week demonstrate that this simple idea does not apply to rodents, and that living circumstances and the environment can be a key factor in determining variation in immune investment among mammals.

It has been assumed that the increased transmission of sexually-transmitted diseases in the case of mating promiscuity is influential in shaping the immune system of mammals. Results published in the scientific journal “Functional Ecology” this week demonstrate that this simple idea does not apply to rodents, and that living circumstances and the environment can be a key factor in determining variation in immune investment among mammals.


A young brown rat (Rattus norvegicus).

Photo: IZW/Jundong Tian

The immune system protects organisms against diseases. Therefore, detecting the factors which shape this system is of great interest to both human and animal medical science. One major question is whether exposure to sexually-transmitted diseases is a main force driving variation in mammalian immunity. Some evidence suggested that this was the case for primates and carnivores and until now was thought to apply to all mammals. Researchers from the German Leibniz Institute for Zoo and Wildlife Research (IZW) have now shown that for rodents, representing 40 % of all living mammal species, this is not the case.

In order to assess the ‘sexually-transmitted diseases’ hypothesis, scientists from the IZW retrieved data from 145 published studies on rodents. They used the number of total white blood cells and their two main components, neutrophils and lymphocytes, as measures of immunity. They quantified the risk of sexually-transmitted diseases by using measures of testes mass, a known predictor of the number of mating partners across species.

The effects of body mass differences and the living circumstances (captive vs. free-ranging) were also taken into consideration in the analyses. The findings demonstrated that large species displayed an increase in the number of immune cells. Also, individuals from captive populations exhibited higher lymphocyte counts than individuals from free-ranging ones. However, testes mass did not vary with immunity, which suggests that sexually-transmitted diseases do not play a major role in shaping the rodent immune system.

“As we know that the prevalence of sexually transmitted pathogens as well as immunological parameters can differ between mammalian groups, pressure by sexually-transmitted diseases may not be the primary determinant of driving immune function in all mammals”, says Jundong Tian, lead author of the study. “Moreover, there is also substantial evidence for effects of captivity upon the physiology of organisms. This suggests that findings derived from captive populations need to be considered very cautiously if we want to understand how evolutionary forces have acted on the immune system over millions of years”, comments Gábor Czirják, principal investigator of the study.

Identifying factors which shape immunity in mammals is likely to ultimately lead to advances in medical treatment. Studies applied to rodents are particularly important in this respect, as mice and rats – key representatives of this mammalian group – continue to serve as a major model animal source for biomedical research.

Publication:
Tian JD, Courtiol A, Schneeberger K, Greenwood AD, Czirják GÁ (2014): Circulating white blood cell counts in captive and wild rodents are influenced by body mass rather than testes mass, a correlate of mating promiscuity. FUNCTIONAL ECOLOGY. Doi:10.1111/1365-2435.12394

Contact:
Jundong Tian, +49 30 5168 227, tian@izw-berlin.de
Gabor Á Czirják , +49 30 5168 214, czirjak@izw-berlin.de
Prof Alex D Greenwood, +49 30 5168 255, greenwood@izw-berlin.de
Steven Seet, +49 30 5168 125, seet@izw-berlin.de

Leibniz Institute for Zoo- and Wildlife Research (IZW)
in Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
GERMANY

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

http://www.izw-berlin.de
https://www.youtube.com/user/izwberlin

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: IZW Wildlife Wildlife Research body mass diseases immune system immunity mammalian species

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>