Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sex with the other species: Tree frogs with foreign sex chromosomes are less fit


During the last glaciation, a huge ice shield reached up to the region of today’s Berlin. By the time it started to melt about 20.000 years ago, it enabled a gradual re-colonization of the northern latitudes by many plant and animal species. Often, they took different colonization routes around the mountain ranges, for example the Carpathians - with astonishing outcomes for a special kind of re-unification that, for instance, happens in Poland: In the region of the Vistula River, two evolutionarily young species of tree frogs meet each other.

Mating of European (Hyla arborea) and Eastern tree frogs (Hyla orientalis) in the lowlands of Poland results in hybrid frogs that carry sex chromosomes from both species. Presumably, they reproduce less successfully, i.e. they are less fit than their ancestral species.

The Eastern tree frog (Hyla orientalis) recolonized the northern latitudes after the last ice age from a glacial refugium around the Black Sea.

Photo: Christophe Dufresnes

This has been found by Dr. Matthias Stöck, Heisenberg-Fellow of the German Science Foundation (DFG) at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), by means of population genetic methods. Together with an international team he investigates the contact of the two tree frog species at the Vistula.

For Dr. Christophe Dufresnes from the University of Lausanne, first author of the common study just published in Scientific Reports, this “suggests that the undifferentiated sex chromosomes in these tree frogs contribute more to the evolution of new species than other, normal chromosomes”.

“We have made great efforts and spent many nights in the field to cover large parts of Poland when sampling saliva from the two tree frog species for genetic analyses”, said Tomasz Majtyka, the University of Wroclaw and equal first author of the study.

Amphibian researcher Matthias Stöck refers to the fact that gene flow between these two young tree frog species is not completely interrupted, yet, which is typical of such young species. “The gene exchange is the least between the sex chromosomes in interspecies crosses, the sex chromosomes ‘collaborate’ the worst with the other chromosomes from the foreign species”, he says.

At a certain stage of their evolution, these species have crossed a “point of no return” at which they could no longer completely merge with the other species. Indeed, this point seems to have already been passed in the tree frogs in Poland, their sex chromosomes can no longer easily admix. Later on, there will be no gene flow any more at all.

“In the tree frog species studied by us, it is amazing that the mating and hybridizations appear to happen mainly in the Polish lowlands”, says Stöck, “while they rarely do so in Greece, where these two species meet each other as well; however, presumably since distinctly longer periods of time”. Over there, much less common offspring between Hyla arborea and Hyla orientalis has been found.

Until 2008, the research community assumed that these two tree frog species represented a single one. At that time, Stöck and co-workers investigated the frogs using molecular methods and found differences that justify to consider them distinct species, which are separated as long as about 5 million years. After the ice age, the European tree frog (Hyla arborea) reached Central and Western Europe across the Danube valley.

East of the Vistula, in Poland and Ukraine, occurs the other species, Hyla orientalis, that has spread to the north from northern Turkey and Asia Minor around the Black Sea and then colonized east around the Carpathian Arc. The old taxonomists assumed that these could be different species or subspecies. Therefore, an old scientific name was available for the “Eastern tree frog” and could be “reactivated” by Stöck. Since, Hyla orientalis, is back to the scientific world. Both species are hard to distinguish externally, they are so-called “cryptic species”.

In the Polish lowlands both species have met less than 14.000 years ago; from an evolutionary point of view a very young contact.

But how do new species evolve? This is one of the great questions of evolutionary biology. “As an amphibian researcher, I would like to find out how long does it take in frogs and toads that a new species arises by geographic isolation and what makes up its genetic identity, we talk about their ‘reproductive isolation’ ” says Stöck.

In the case of the tree frogs, the scientists were lucky to find such natural hybrid zones. The Carpathians form a perfect border between Hyla arborea and Hyla orientalis that are then joined again to the north of the mountains, in the Polish lowlands. When populations are separated (allopatry) over long periods of time, they accumulate adaptations to their environments and random mutations. Important is also genetic drift which involves random processes on the population level. Both groups develop differently, especially, if only few individuals survive in a population, proceed though a “genetic bottleneck”, similarly as it happened once to parts of modern humanity, which presents the offspring of relatively few ancestral individuals.

In the laboratory, such processes are hard to model. Frogs that can be crossed in a terrarium may perhaps not do so in nature and vice versa. „In natural hybrid zones, we find natural species complexes and can examine their genetic constitution“, says Stöck. „We estimate that Hyla arborea and Hyla orientalis have been separated for about 5 million years“.

During the ice age, Hyla arborea hibernated in southern latitudes, for example in Greece and at the Mediterranean and Hyla orientalis around the Black Sea. After the last glaciation, the two species have spread to the north and finally met each other in the region of the Vistula River.

The popular knowledge on sex chromosomes usually considers the situation in mammals, in which sex chromosomes are easily distinguishable under the microscope. The male Y-chromosome in humans is very small compared to the X-chromosome. These heteromorphic sex chromosomes, i.e. morphologically distinguishable sex chromosomes, are mainly no longer recombining during reproduction. It is assumed that this lack of recombination has led to the degeneration of the mammal Y.

In fish and amphibians, however, various chromosomes can enter the role as a sex chromosome or may lose it again during evolution. As a result, these sex chromosomes have basically no time to degenerate as in mammals. Sex determination in general can be thought as a sex-determination cascade. “At the top, there is a ‘master gene’ that decides whether a frog becomes a male or a female”, says Stöck. This gene then ‘switches on’ networks of genes that form the male or the female phenotype. Some genes that form the ova or the sperm production appear amazingly conserved. Strong variation, however, is found on the top of the cascade, meaning different master genes exist and it also varies on which amphibian chromosome the master gene is situated.
At the tree frog sex chromosomes, we can observe „evolution in action“, says Stöck. In this way, he and his colleagues can directly have look into the ‘laboratory of evolution’.

Publication (Open Access, including figures):

Dufresnes C., Majtyka T., Baird S.J.E., Gerchen J., Borzée A., Savary R., Ogielska M., Perrin N., Stöck M. (2016): Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes. Scientific Reports 6:21029 | DOI: 10.1038/srep21029.


PD Dr. Matthias Stöck
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Müggelseedamm 301
12587 Berlin
Phone: +49 (0)30 64 181 629

PR office
Nadja Neumann/Angelina Tittmann
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Müggelseedamm 310
12587 Berlin
Phone: +49 (0)30 64181-975/ -631

About IGB:

The Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, is an independent and interdisciplinary research centre dedicated to the creation, dissemination, and application of knowledge about freshwater ecosystems. Working in close partnership with the scientific community, government agencies, as well as the private sector, guarantees the development of innovative solutions to the most pressing challenges facing freshwater ecosystems and human societies.

Angelina Tittmann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>