Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage -- yes, poop -- could be a source of valuable metals and critical elements

23.03.2015

Poop could be a goldmine -- literally. Surprisingly, treated solid waste contains gold, silver and other metals, as well as rare elements such as palladium and vanadium that are used in electronics and alloys. Now researchers are looking at identifying the metals that are getting flushed and how they can be recovered. This could decrease the need for mining and reduce the unwanted release of metals into the environment.

A talk about their recent work will be one of nearly 11,000 presentations here at the 249th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday.


This image shows microscopic gold-rich and lead-rich particles in a municipal biosolids sample.

Credit: Heather Lowers, USGS Denver Microbeam Laboratory

"If you can get rid of some of the nuisance metals that currently limit how much of these biosolids we can use on fields and forests, and at the same time recover valuable metals and other elements, that's a win-win," says Kathleen Smith, Ph.D.

"There are metals everywhere," Smith says, noting they are "in your hair care products, detergents, even nanoparticles that are put in socks to prevent bad odors." Whatever their origin, the wastes containing these metals all end up being funneled through wastewater treatment plants, where she says many metals end up in the leftover solid waste.

At treatment plants, wastewater goes through a series of physical, biological and chemical processes. The end products are treated water and biosolids. Smith, who is at the U.S. Geological Survey (USGS), says more than 7 million tons of biosolids come out of U.S. wastewater facilities each year. About half of that is used as fertilizer on fields and in forests, while the other half is incinerated or sent to landfills.

Smith and her team are on a mission to find out exactly what is in our waste. "We have a two-pronged approach," she says. "In one part of the study, we are looking at removing some regulated metals from the biosolids that limit their use for land application.

"In the other part of the project, we're interested in collecting valuable metals that could be sold, including some of the more technologically important metals, such as vanadium and copper that are in cell phones, computers and alloys," Smith said. To do this, they are taking a page from the industrial mining operations' method book and are experimenting with some of the same chemicals, called leachates, which this industry uses to pull metals out of rock.

While some of these leachates have a bad reputation for damaging ecosystems when they leak or spill into the environment, Smith says that in a controlled setting, they could safely be used to recover metals in treated solid waste.

So far, her group has collected samples from small towns in the Rocky Mountains, rural communities and big cities. For a more comprehensive picture, they plan to combine their information with many years' worth of existing data collected by the Environmental Protection Agency and other groups at the USGS.

In the treated waste, Smith's group has already started to discover metals like platinum, silver and gold. She states that they have observed microscopic-sized metal particles in biosolids using a scanning electron microscope. "The gold we found was at the level of a minimal mineral deposit," she says, meaning that if that amount were in rock, it might be commercially viable to mine it. Smith adds that "the economic and technical feasibility of metal recovery from biosolids needs to be evaluated on a case-by-case basis."

In a recent Environmental Science & Technology paper (2015, DOI: 10.1021/es505329q), another research group also studying this issue calculated that the waste from 1 million Americans could contain as much as $13 million worth of metals. That's money that could help fuel local economies.

###

A press conference on this topic will be held Tuesday, March 24, at 10:30 a.m. Mountain time in the Colorado Convention Center. Reporters may check-in at Room 104 in person, or watch live on YouTube http://bit.ly/ACSLiveDenver. To ask questions, sign in with a Google account.

The researchers acknowledge funding from the U.S. Geological Survey Mineral Resources Program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Metal occurrence in and potential recovery from municipal biosolids

Abstract

Recovery and reuse of potentially valuable metals and newly emerging technologically important (critical) elements from waste streams can decrease U.S. reliance on primary resources and lessen unwanted dispersion of metals in the environment, while reducing disposal costs and regulatory liabilities for generators. Municipal biosolids, which are nutrient-rich organic materials produced from the treatment of domestic sewage in a facility, can contain significant concentrations of metals and may provide an opportunity for metal recovery from a waste stream. In excess of 7 million dry tons of biosolids are generated in the U.S. each year by approximately 16,500 municipal wastewater treatment facilities. The U.S. EPA analyzed 28 metals for their 2009 Targeted National Sewage Sludge Survey (TNSSS; samples randomly selected from 3,337 facilities that treat more than 1 million gallons per day), including these potentially valuable and critical elements (mg/kg): (1) Ag (range 2-856; mean 30), (2) Cu (range 115-2,580; mean 563), and (3) V (range 2-617; mean 36). An eight-year study by the USGS involved monthly sampling and analysis of biosolids from a municipal wastewater treatment plant. Some potentially valuable and critical element data (ppm) from that study include: (1) Ag (range 12-61; mean 28), (2) Cu (range 474-845; mean 638), (3) V (range 11-128; mean 49), and (4) Au for a limited number of samples (range 0.1-0.6). Leaching studies with extractants used by the mining industry will help demonstrate the recovery potential of metals from biosolids. An added benefit is that some metals, such as Pb, represent "nuisance" metals that are regulated for use of biosolids as soil amendments. Removal and recovery of these metals from the biosolids prior to land application could extend the application period for the applied fields. However, the economic and technical feasibility of metal recovery needs to be evaluated on a case-by-case basis.

Media Contact

303-228-8406 (Denver Press Center, March 21-25)

Michael Bernstein
202-872-6042 (D.C. Office)
301-275-3221 (Cell)
m_bernstein@acs.org

Katie Cottingham, Ph.D.
301-775-8455 (Cell)
k_cottingham@acs.org

Michael Bernstein | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>