Setting the cellular clock

Many organisms live out their lives on schedules established by internal clock mechanisms, generated by the combined action of multiple regulatory networks that interlock like gears in a watch. The resulting circadian rhythms establish one’s internal perception of day and night, as well as numerous time-points in between.

In 2005, a team led by Hiroki Ueda of the RIKEN Center for Developmental Biology in Kobe made significant progress in identifying the core components of the complex circadian circuitry1. They found several regulatory elements that specifically mark genes for activation or inhibition in the morning, daytime or night, as well as numerous genes that mediate regulation via these elements.

“Our team identified a natural transcriptional circuit for mammalian circadian clocks,” explain Maki Ukai-Tadenuma and Takeya Kasukawa, members of Ueda’s team. “However, no one has yet confirmed the mechanism that generates practically continuous phases from these three, discrete basic phases.”

However, the investigators had ideas about how such patterns might emerge, and were able to sketch a rough map of how the various time-specific regulatory loops may interact in vivo to produce a stable day–night cycle. To test their hypotheses, they constructed a series of synthetic circadian circuits within live cells based on their models, and examined the extent to which their activity replicated natural biological cycles2.

In fact, these experimental scenarios provided strong support for their regulatory models. One of the synthetic circuits consisted of a bioluminescent indicator gene under the regulation of a morning-specific activator and a nighttime-specific repressor, and the resulting pattern of indicator activity was a cyclic oscillation that very closely matches the natural expression pattern of daytime-specific genes.

They were similarly able to replicate night-cycle activity with a daytime-specific activator and morning-specific repressor, and were even able to generate novel ‘late night’ or ‘dusk’ output peaks by further tinkering with the timing of activation and repression. Most importantly, their experimental findings were all consistent with the predictions of their previously developed theoretical models. “Both our simulation model and the derived design principles successfully recapitulated the natural transcriptional circuit in the circadian clocks,” say the researchers.

Although their modeling system has proven effective, the researchers have yet to fully reconstruct all the phases of the mammalian circadian cycle. “In our study, morning transcriptional regulation is still a ‘missing link’,” they point out. The team’s focus now is on successfully identifying the regulatory processes required to restore these final time-points to their reconstructed cellular clock.

Reference

1. Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M. & Hashimoto, S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nature Genetics 37, 187–192 (2005).

2. Ukai-Tadenuma, M., Kasukawa, T. & Ueda, H.R. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nature Cell Biology 10, 1154–1163 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Systems Biology

Media Contact

Saeko Okada ResearchSEA

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors