Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Selenium Protects a Specific Type of Interneurons in the Brain


Exactly 200 years after the discovery of the trace element selenium, researchers at Helmholtz Zentrum München have shown for the first time why this chemical element is indispensable for mammalian life. As integral part of the enzyme GPX4, selenium protects a subset of neurons from cell death during postnatal development. The researchers reported these findings in the scientific journal 'Cell'.

Exactly 200 years ago, the Swedish scientist Jöns Jacob Berzelius discovered the trace element selenium, which he named after the goddess of the moon, Selene. Besides its industrial applications (chemical industry, production of semiconductors and toners), selenium is an essential trace element and indispensable for humans, many animals and some bacteria. A team led by Dr. Marcus Conrad, research group leader at the Institute of Developmental Genetics (IDG) at Helmholtz Zentrum München, showed for the first time why selenium is a limiting factor for mammals.

Graphical Abstract.

Source: Ingold et al., Cell, 2017

Scientific ‘by-catch‘ solves decades-old mystery

The scientists have been investigating for years the processes of a novel type of cell death, known as ferroptosis. In this context, the enzyme GPX4, which normally contains selenium in the form of the amino acid selenocysteine*, plays an important role.

... more about:
»Helmholtz »Protects »cell death »death »diseases »enzyme »selenium

In order to better understand the role of GPX4 in this death process, we established and studied mouse models in which the enzyme was modified," said study leader Conrad. "In one of these models, we observed that mice with a replacement of selenium to sulfur in GPX4 did not survive for longer than three weeks due to neurological complications.”

In their search for the underlying reasons, the researchers identified a distinct subpopulation of specialized neurons in the brain, which were absent when selenium-containing GPX4 was lacking. "In further studies, we were able to show that these neurons were lost during postnatal development, when sulfur- instead of selenium-containing GPX4 was present," stated first author of the study, Irina Ingold.

Furthermore, the scientists were able to show that ferroptosis is triggered by oxidative stress, which is known to occur for instance during high metabolic activity of cells and high neuronal activity. “Our study demonstrates for the first time that selenium is an essential factor for the postnatal development of a specific type of interneurons,” said Dr. José Pedro Friedmann Angeli, a scientist at the IDG, describing the results. "Selenium-containing GPX4 protects these specialized neurons from oxidative stress and from ferroptotic cell death."

Thus, the study explains why certain selenoenzymes are essential in some organisms, including mammals, whereas they are dispensable in other organisms, such as fungi and higher plants. In future investigations, study leader Marcus Conrad and his team aim to investigate how ferroptosis is triggered in cells. As a long-term goal, he wants to elucidate the role of ferroptosis in various disease conditions in order to be able to alleviate diseases, such as cancer or neurodegeneration, which are currently difficult to tackle.

Further Information

GPX4 stands for the enzyme glutathione peroxidase 4, one of 25 selenoproteins in humans. In the enzyme, selenium is an integral part of the 21st amino acid selenocysteine. The enzyme plays a decisive role in ferroptosis. The word ferroptosis, which means a type of programmed cell death dependent on iron, is derived from the Greek ptosis: fall and Latin ferrum: iron. Ferroptosis has not yet been completely elucidated, but the importance of cellular suicide has already been impressively confirmed, for example, by apoptosis, which has been more extensively studied.

Partners at Helmholtz Zentrum München who also contributed to the study were: Dr. Hans Zischka (Institute of Toxicology), Dr. Martin Jastroch (Institute of Diabetes and Obesity), Prof. Dr. Axel Walch und Dr. Michaela Aichler (Research Unit Analytical Pathology). The PhD students Irina Ingold and Katalin Buday are members of the Helmholtz Graduate School Environmental Health HELENA.

Ingold, I. et al. (2017): Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell, DOI: 10.1016/j.cell.2017.11.048

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

Rising life expectancy is causing an increase in age-related, but also sociological and environmental, influences on the genes. The Institute of Developmental Genetics (IDG) examines these changes in genetic material. In the Mouse Genetics group, genetic animal models are developed to investigate various diseases. These models are analyzed in the Disease Modelling research group in order to identify gene functions and cell processes and evaluate the influence of the environment and aging processes. The group focuses on the examination of neurological and psychiatric diseases.

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail:

Scientific Contact at Helmholtz Zentrum München:
Dr. Marcus Conrad, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4608, E-mail:

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Helmholtz Protects cell death death diseases enzyme selenium

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>