Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016

Neurons adjust their synapses by altering the synthesis of hundreds of proteins to regulate synaptic strength and network activity.

Learning and memory formation are based on our brain’s ability to adjust and regulate neuronal network activity. Neurons communicate at specialized structures known as synapses, and they are able to control the strength of their synaptic connections in response to changes in both the magnitude and frequency of inputs.


Homestatic synpatic plasticity

Christoph Schanzenbächer / Max Planck Institute for Brain Research

This process, “synaptic plasticity”, includes homeostatic scaling, a process by which neurons are able to stabilize network activity in response to large perturbations. Scientists at the Max Planck Institute for Brain Research in Frankfurt am Main now report a detailed analysis of the proteins synthesized by neurons to mediate homeostatic scaling.

Using bio-orthogonal labeling strategies, they discovered changes in newly-synthesized proteins, including known proteins involved in synaptic plasticity, but also new, yet uncharacterized proteins. The extensive, publicly-available dataset generated in this study provides a valuable starting point and reference for future studies of homeostatic scaling and has been published in the latest issue of Neuron.

Changes in the synthesis of cellular proteins lie at the heart of all adaptations that cells undergo. The complete complement of proteins expressed in a cell is known as the proteome. Tracking proteome changes in neurons during synaptic plasticity represents a major challenge: how can one distinguish the newly synthesized proteins from the pre-existing proteins within a cell?

This challenge was addressed by making use of bio-orthogonal, non-canonical amino acid tagging (BONCAT) - a method previously developed by Erin Schuman, Director at the Max Planck Institute for Brain Research in Frankfurt, and her colleagues Daniela Dieterich (Magdeburg) and Dave Tirrell (Caltech). In this technique, neurons incorporate artificial amino acids into new proteins, allowing subsequent visualization and purification of the newly-synthesized proteome produced upon stimulation or treatment.

Together with the joint proteomics lab of the Max Planck Institute for Brain Research and Max Planck Institute of Biophysics (headed by Julian Langer), 5940 newly-synthesized proteins were detected and analyzed in primary hippocampal neurons undergoing opposing forms of homeostatic plasticity. “We observed no significant changes in the overall number of proteins being synthesized, but rather adaptations to the expression levels of hundreds of proteins”, says Christoph Schanzenbächer, lead author of the manuscript.

The discovered proteins are involved in many important neuronal processes including neurite outgrowth, axon guidance, excitatory synapses, and glutamate receptor complexes. In addition, the majority of the differentially regulated proteins were directly associated with neurological diseases, including schizophrenia, epilepsy, and Parkinson’s disease – thus establishing a direct link between protein groups and disease models.

“We are particularly intrigued by the proteins previously not associated with neuronal learning, as these proteins may represent new, exciting candidates for future studies”, says Julian Langer. The full dataset has been made publicly available upon publication.

This study provides new, unprecedented insights into the proteomic response of primary neurons undergoing homeostatic, synaptic plasticity. In the future, the team in Frankfurt is working on transferring the technique to other systems. “An exciting next direction is the selective labeling of specific cell types in vivo and the direct tracking visualization and analysis of the associated proteomes” says Erin Schuman.

Publication: Schanzenbächer, C.T., Sambandan, S., Langer, J.D. and Schuman, E.M. (2016) Nascent Proteome Remodeling following Homeostatic Scaling at Hippocampal Synapses. Neuron 92(2): 358–371

Weitere Informationen:

https://www.mpg.de/10797740/neurons-homeostatic-scaling
http://tinyurl.com/j9ea63u

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>