Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing viruses in a new light with nanoholes

01.02.2016

Nanohole fibers made of quartz glass permit nondestructive detection of viruses – Collaborative development by Heraeus, Harvard University, Leiden University and the IPHT in Jena

Revolutionary development for virus research: Scientists at the Leibniz Institute of Photonic Technology (IPHT) in Jena, in cooperation with others at Heraeus Quarzglas, Harvard University (in the United States) and Leiden University (in the Netherlands), have succeeded in the marker-free and nondestructive detection of viruses with dimensions smaller than 20 nanometers (a nanometer is one millionth of a millimeter).


01: Stefan Weidlich, physicist at Specialty Fiber Optics Research & Development at Heraeus Quarzglas, developed together with a Heraeus project team and an IPHT research team the nanohole fiber.

Source: Heraeus


02+03: Nanohole fiber makes new observation methods possible
The core of the fiber contains a nanohole with a diameter of 200 nanometers that extends along the entire fiber. Test viruses swimming in water are poured into this hole, and light is fed into the fiber core. The size and movement of the viruses can be determined by means of light scattering. Source: Heraeus

They did so using an innovative nanohole fiber similar to an internet fiber and made of quartz glass from Heraeus. Fields of application range from medical diagnostics to the analysis of drinking water. This pioneering advance makes it possible to observe viruses in their natural environment, without manipulation. Initial measurements with test viruses have already been completed at Harvard and Leiden.

Viruses can be the cause of life-threatening infections such as flu or intestinal diseases. As viral diseases increase and spread, the clear detection and definite identification of adaptable pathogens is becoming increasingly important. The more scientists know about the structure of viruses and their rapid adaptation to the human immune system, the better the measures they can develop to combat them.

The problem: Viruses are 300 to 400 times smaller than the diameter of a human hair, and therefore nearly invisible. Virological diagnostics offer a number of elaborate options. These include scanning electron or fluorescence microscopy, methods that require preliminary steps such as dyeing or spatial fixation.

However, marking a virus with a dye changes its properties. The new nanohole method sidesteps these disadvantages, because the fiber can be integrated in standard microscopes, thereby expanding their detection limit to other nanoparticles.

Heraeus developed the nanohole fiber

Heraeus Quarzglas worked with an IPHT research team to develop the fiber. The unusual glass fiber was produced right at the Heraeus facilities in Hanau. Stefan Weidlich, physicist at Specialty Fiber Optics Research & Development at Heraeus Quarzglas, is pleased with the achievement: "Our application is distinguished by the fact that we put the viruses into quartz glass – one of the purest technical materials manufactured today.

The fiber itself conducts light almost perfectly, without scattering it. But as soon as the light encounters the virus, some of it is diffracted. This allows very rapid observations with an extremely limited background. As a result, the movement of a virus can be observed and recorded within a period of several seconds.“

For production of the fibers, Heraeus covered the entire value chain. The process begins with manufacturing the preform from high-purity quartz glass and ends with drawing the extremely sensitive nanohole fibers. In selecting and characterizing the appropriate quartz glass material and developing the special, unusual design of the nanohole fiber, the technology group applied its combined expertise in the areas of telecommunications glass fibers and specialty fibers. As the world's largest integrated quartz glass manufacturer, Heraeus has been advancing innovations in quartz glass for more than 110 years.

Nanohole fiber makes new observation methods possible

The core of the fiber contains a nanohole with a diameter of 200 nanometers that extends along the entire fiber. Test viruses swimming in water are poured into this hole, and light is fed into the fiber core. The size and movement of the viruses can be determined by means of light scattering.

The transmission of light in an optical fiber is based on a refractive index that decreases from the core to the cladding. If the light fed into the capillaries encounters a virus, part of the light is diverted from its direction of propagation; that is, it is scattered. When this scattering is observed through a microscope, the size of the virus can be determined.

For Heraeus developer Stefan Weidlich, the use of the nanohole fiber to examine viruses is just the first of many applications. "We envision other fields of application in medicine, in life sciences and in sensor technology. For example, it could be used to measure very valuable small particles in a liquid, such as pharmaceuticals, because the sample volumes required for the nanohole fibers are so minimal."

Note: The research results are summarized in a technical report at ACS Nano online: http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05646


Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance. We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries. In the 2014 financial year, Heraeus generated product revenues of €3.4 bn and precious metal revenues of €12.2bn euros. With around 12,600 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.


For additional information, please contact:

Dr. Jörg Wetterau
Communications & Marketing
Head of Technology Communications & Trade Press
Heraeus Holding GmbH
Heraeusstraße 12-14
63450 Hanau
Phone +49 (0) 6181.35-5706
E-mail: joerg.wetterau@heraeus.com
www.heraeus.com

Dr. Jörg Wetterau | Heraeus Holding GmbH

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>