Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing viruses in a new light with nanoholes

01.02.2016

Nanohole fibers made of quartz glass permit nondestructive detection of viruses – Collaborative development by Heraeus, Harvard University, Leiden University and the IPHT in Jena

Revolutionary development for virus research: Scientists at the Leibniz Institute of Photonic Technology (IPHT) in Jena, in cooperation with others at Heraeus Quarzglas, Harvard University (in the United States) and Leiden University (in the Netherlands), have succeeded in the marker-free and nondestructive detection of viruses with dimensions smaller than 20 nanometers (a nanometer is one millionth of a millimeter).


01: Stefan Weidlich, physicist at Specialty Fiber Optics Research & Development at Heraeus Quarzglas, developed together with a Heraeus project team and an IPHT research team the nanohole fiber.

Source: Heraeus


02+03: Nanohole fiber makes new observation methods possible
The core of the fiber contains a nanohole with a diameter of 200 nanometers that extends along the entire fiber. Test viruses swimming in water are poured into this hole, and light is fed into the fiber core. The size and movement of the viruses can be determined by means of light scattering. Source: Heraeus

They did so using an innovative nanohole fiber similar to an internet fiber and made of quartz glass from Heraeus. Fields of application range from medical diagnostics to the analysis of drinking water. This pioneering advance makes it possible to observe viruses in their natural environment, without manipulation. Initial measurements with test viruses have already been completed at Harvard and Leiden.

Viruses can be the cause of life-threatening infections such as flu or intestinal diseases. As viral diseases increase and spread, the clear detection and definite identification of adaptable pathogens is becoming increasingly important. The more scientists know about the structure of viruses and their rapid adaptation to the human immune system, the better the measures they can develop to combat them.

The problem: Viruses are 300 to 400 times smaller than the diameter of a human hair, and therefore nearly invisible. Virological diagnostics offer a number of elaborate options. These include scanning electron or fluorescence microscopy, methods that require preliminary steps such as dyeing or spatial fixation.

However, marking a virus with a dye changes its properties. The new nanohole method sidesteps these disadvantages, because the fiber can be integrated in standard microscopes, thereby expanding their detection limit to other nanoparticles.

Heraeus developed the nanohole fiber

Heraeus Quarzglas worked with an IPHT research team to develop the fiber. The unusual glass fiber was produced right at the Heraeus facilities in Hanau. Stefan Weidlich, physicist at Specialty Fiber Optics Research & Development at Heraeus Quarzglas, is pleased with the achievement: "Our application is distinguished by the fact that we put the viruses into quartz glass – one of the purest technical materials manufactured today.

The fiber itself conducts light almost perfectly, without scattering it. But as soon as the light encounters the virus, some of it is diffracted. This allows very rapid observations with an extremely limited background. As a result, the movement of a virus can be observed and recorded within a period of several seconds.“

For production of the fibers, Heraeus covered the entire value chain. The process begins with manufacturing the preform from high-purity quartz glass and ends with drawing the extremely sensitive nanohole fibers. In selecting and characterizing the appropriate quartz glass material and developing the special, unusual design of the nanohole fiber, the technology group applied its combined expertise in the areas of telecommunications glass fibers and specialty fibers. As the world's largest integrated quartz glass manufacturer, Heraeus has been advancing innovations in quartz glass for more than 110 years.

Nanohole fiber makes new observation methods possible

The core of the fiber contains a nanohole with a diameter of 200 nanometers that extends along the entire fiber. Test viruses swimming in water are poured into this hole, and light is fed into the fiber core. The size and movement of the viruses can be determined by means of light scattering.

The transmission of light in an optical fiber is based on a refractive index that decreases from the core to the cladding. If the light fed into the capillaries encounters a virus, part of the light is diverted from its direction of propagation; that is, it is scattered. When this scattering is observed through a microscope, the size of the virus can be determined.

For Heraeus developer Stefan Weidlich, the use of the nanohole fiber to examine viruses is just the first of many applications. "We envision other fields of application in medicine, in life sciences and in sensor technology. For example, it could be used to measure very valuable small particles in a liquid, such as pharmaceuticals, because the sample volumes required for the nanohole fibers are so minimal."

Note: The research results are summarized in a technical report at ACS Nano online: http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05646


Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance. We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries. In the 2014 financial year, Heraeus generated product revenues of €3.4 bn and precious metal revenues of €12.2bn euros. With around 12,600 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.


For additional information, please contact:

Dr. Jörg Wetterau
Communications & Marketing
Head of Technology Communications & Trade Press
Heraeus Holding GmbH
Heraeusstraße 12-14
63450 Hanau
Phone +49 (0) 6181.35-5706
E-mail: joerg.wetterau@heraeus.com
www.heraeus.com

Dr. Jörg Wetterau | Heraeus Holding GmbH

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>