Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing dinosaur feathers in a new light


University of Bonn researchers postulate: Dinosaurs' color vision sheds light on the origin of feathers

Why were dinosaurs covered in a cloak of feathers long before the early bird species Archaeopteryx first attempted flight? Researchers from the University of Bonn and the University of Göttingen attempt to answer precisely that question in their article "Beyond the Rainbow" in the latest issue of the renowned journal Science.

The radiant emerald green is a result of the light-refracting nano-structures inside of these feathers. At the same time, their flat, consistently branching structure works to produce the striking metallic sheen. This specimen is from the collection housed in the Institute for Zoology at the University of Bonn in the Poppelsdorf Palace.

Credit: Photo: Georg Oleschinski/Univ. Bonn

The research team postulates that these ancient lizards had a highly developed ability to discern color. Their hypothesis: The evolution of feathers made dinosaurs more colorful, which in turn had a profoundly positive impact on communication, the selection of mates and on dinosaurs' procreation.

The suggestion that birds and dinosaurs are close relatives dates back to the 19th century, the time when the father of evolutionary theory, Charles Darwin, was hard at work. But it took over 130 years for the first real proof to come to light with numerous discoveries of the remains of feathered dinosaurs, primarily in fossil sites in China.

Thanks to these fossil finds, we now know that birds descend from a branch of medium-sized predatory dinosaurs, the so-called theropods. Tyrannosaurus rex and also velociraptors, made famous by the film Jurassic Park, are representative of these two-legged meat eaters. Just like later birds, these predatory dinosaurs had feathers – long before Archaeopteryx lifted itself off the ground. But why was this, particularly when dinosaurs could not fly?

Dinosaurs' color vision

"Up until now, the evolution of feathers was mainly considered to be an adaptation related to flight or to warm-bloodedness, seasoned with a few speculations about display capabilities" says the article's first author, Marie-Claire Koschowitz of the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn. "I was never really convinced by any of these theories. There has to be some particularly important feature attached to feathers that makes them so unique and caused them to spread so rapidly amongst the ancestors of the birds we know today", explains Koschowitz.

She now suggests that this feature is found in dinosaurs' color vision. After analyzing dinosaurs' genetic relationships to reptiles and birds, the researcher determined that dinosaurs not only possessed the three color receptors for red, green and blue that the human eye possesses, but that they, like their closest living relatives, crocodiles and birds, were probably also able to see extremely short-wave and ultraviolet light by means of an additional receptor. "Based on the phylogenetic relationships and the presence of tetrachromacy in recent tetrapods it is most likely that the stem species-of all terrestrial vertebrates had photo receptors to detect blue, green, red and uv", says Dr. Christian Fischer of the University of Göttingen.

This makes the world much more colorful for most animals than it is for human beings and other mammals. Mammals generally have rather poor color vision or even no color vision at all because they tended to be nocturnal during the early stages of their evolution. In contrast, numerous studies on the social behavior and choice of mates among reptiles and birds, which are active during the day, have shown that information transmitted via color exerts an enormous influence on those animals' ability to communicate and procreate successfully.

Feathers allowed for more visible signals than did fur

We know from dinosaur fossil finds that the precursors to feathers resembled hairs similar to mammals' fur. They served primarily to protect the smaller predatory dinosaurs – which would eventually give rise to birds – from losing too much body heat. The problem with these hair-like forerunners of feathers and with fur is that neither allow for much color, but tend instead to come in basic patterns of brown and yellow tones as well as in black and white. Large flat feathers solved this shortcoming by providing for the display of color and heat insulation at the same time.

Their broad surface area, created by interlocked strands of keratin, allows for the constant refraction of light, which consequently produces what is referred to as structural coloration. This refraction of light is absolutely necessary to produce colors such as blue and green, the effect of metallic-like shimmering or even colors in the UV spectrum. "Feathers enable a much more noticeable optical signaling than fur would allow. Iridescent birds of paradise and hummingbirds are just two among a wealth of examples," explains Koschowitz.

This work means we must see the evolution of feathers in a whole new light. They provided for a nearly infinite variety of colors and patterns while simultaneously providing heat insulation. Prof. Dr. Martin Sander of the University of Bonn's Steinmann Institute summarizes the implications of this development: "This allowed dinosaurs to not only show off their colorful feathery attire, but to be warm-blooded animals at the same time – something mammals never managed."

Publication: "Beyond the rainbow," Science, DOI: 10.1126/science.1258957

Media contact:

Marie-Claire Koschowitz
Steinmann Institute of Geology,
Mineralogy and Paleontology
at the University of Bonn
Tel.: ++49-(0)228-731786

Marie-Claire Koschowitz | EurekAlert!
Further information:

Further reports about: Feathers Geology Paleontology animals color vision dinosaur heat patterns predatory dinosaurs reptiles

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>