Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock genetic secret that could help fight malaria

30.03.2016

UC Riverside assistant professor is among researchers that isolated the gene believed to determine whether a mosquito is male

A group of scientists, including one from the University of California, Riverside, have discovered a long-hypothesized male determining gene in the mosquito species that carries malaria, laying the groundwork for the development of strategies that could help control the disease.


Researchers have unlocked a genetic mystery surrounding the Anopheles gambiae mosquito species.

Credit: James Gathany, Centers for Disease Control and Prevention's Public Health Image Library

In many species, including mosquitoes, Y chromosomes control essential male functions, including sex determination and fertility. However, knowledge of Y chromosome genetic sequences is limited to a few organisms.

The discovery of the putative male-determining gene, which was outlined in a paper published online Monday (March 28) in the journal Proceedings of the National Academies of Sciences, provides researchers with a long-awaited foundation for studying male mosquito biology.

This is significant because male mosquitoes offer the potential to develop novel vector control strategies to combat diseases, such as malaria and the zika and dengue viruses, because males do not feed on blood or transmit diseases. (The African malaria-carrying mosquito, Anopheles gambiae, is different than the mosquito that carries zika and dengue, but similar control strategies could be used to fight both species.)

One vector control method under development involves genetic modification of the mosquito to bias the population sex ratio toward males, which do not bite, with the goal of reducing or eliminating the population. This and other control methods have received a lot of attention recently because of the spread of zika virus.

Modeling has shown that the most efficient means for genetic modification of mosquitoes is engineering a driving Y chromosome. A molecular-level understanding of the Y-chromosome of the malaria mosquito, as described in the just-published paper, is important to inform and optimize such a strategy.

The paper, "Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes," was co-authored by 28 scientists from four countries and four universities in the United States. Omar Akbari, an assistant professor of entomology at UC Riverside and a member of the university's Institute for Integrative Genome Biology, is one of the authors.

While the genome of Anopheles gambiae was sequenced 13 years ago, the Y chromosome portion of it was never successfully assembled.

The researchers who published the paper in the Proceedings of the National Academies of Sciences used multiple genome sequencing techniques, including single-molecule sequencing and Illumina-based sex-specific transcriptional profiling, as well as whole-genome sequencing, to identify an extensive dataset of Y chromosome sequences and explore their organization and evolution in Anopheles gambiae complex, a group of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles which contain some of the most important vectors of human malaria.

They found only one gene, known as YG2, which is exclusive to the Y chromosome across the species complex, and thus is a possible male-determining gene.

Media Contact

Sean Nealon
sean.nealon@ucr.edu
951-827-1287

 @UCRiverside

http://www.ucr.edu 

Sean Nealon | EurekAlert!

Further reports about: Anopheles Y chromosome genetic modification malaria mosquito

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>