Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover vast numbers of DNA 'blind spots' that may hide cancer-causing mistakes

14.11.2014

Cancer Research UK scientists have found more than 400 'blind spots' in DNA which could hide cancer-causing gene faults, according to research published* today (Friday) in Cancer Research.

The researchers found hidden faults in areas that are tricky for gene-reading technology to decode. This technique, which unravels cancer's genetic blueprint, is an important part of the research that scientists carry out to understand more about cancer's biology.

By finding new ways to unlock these blind spots in the future, the researchers hope this will help us understand these mistakes and whether they lead to cancer. This could be a step towards developing tests to spot cancers earlier or provide new tactics for discovering future cancer treatments.

The team, from the Cancer Research UK Manchester Institute, compared two giant gene databases made from cancer cells grown in labs and cross-checked all the genes that are known - or are likely to be - involved in cancer to unearth the problem areas.

They found that the 400 blind spots in the genes were hidden in very repetitive DNA areas which cause the gene-reading technology to stutter. This problem reading the genes could conceal mistakes which might play a vital role in cancer.

Lead researcher Andrew Hudson, at the Cancer Research UK Manchester Institute at The University of Manchester, said: "The genes behind cancer are like a story. While we've been able to read most of the book using gene-reading technology, the limits of these tools mean some pages are missing.

"These pages could just be unimportant filler, but we wonder if they might hold important twists in the plot which could affect our understanding of cancer. The next step in our work will be to find a way to open up these areas to help piece together the full story."

Nell Barrie, Cancer Research UK's senior science information manager, said: "We're at an unprecedented point in cancer research. As research accelerates we're revealing more and more about cancer's secrets and central to this is our better understanding of how genetic changes drive the disease."

"By delving deeper into cancer's genetic origins we can spot the ways the disease is triggered and develops. This could help us to tackle it from the root, giving more cancer patients a chance at surviving the disease."

The University of Manchester, including the Cancer Research UK Manchester Institute, joined forces with Cancer Research UK and The Christie NHS Foundation Trust to form the Manchester Cancer Research Centre, allowing doctors and scientists to work closely together to turn scientific advances into patient benefits sooner.

###

For media enquiries contact Emily Head in the Cancer Research UK press office on 020 3469 6189 or, out of hours, on 07050 264 059.

Notes to editors:

* Hudson et al. Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery. Cancer Research. DOI: 10.1158/0008-5472.CAN-14-1020

About Manchester Cancer Research Centre

The Manchester Cancer Research Centre (MCRC) is a partnership founded by The University of Manchester, including the CRUK Manchester Institute, The Christie NHS Foundation Trust and Cancer Research UK. The MCRC brings together the expertise, ambition and resources of its partner organisations in the fields of cancer treatment and clinical research and provides outstanding facilities where researchers and clinicians can work closely together. The aim of the MCRC is to improve understanding of how cancer develops, in order to translate basic and clinical research into new diagnostic tests and treatments that benefit cancer patients. http://www.mcrc.manchester.ac.uk

About Cancer Research UK

  • Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research.
  • Cancer Research UK's pioneering work into the prevention, diagnosis and treatment of cancer has helped save millions of lives.
  • Cancer Research UK receives no government funding for its life-saving research. Every step it makes towards beating cancer relies on every pound donated.
  • Cancer Research UK has been at the heart of the progress that has already seen survival rates in the UK double in the last forty years.
  • Today, 2 in 4 people survive cancer for at least 10 years. Cancer Research UK's ambition is to accelerate progress so that 3 in 4 people will survive cancer within the next 20 years.
  • Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
  • Together with its partners and supporters, Cancer Research UK's vision is to bring forward the day when all cancers are cured. For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1022 or visit http://www.cancerresearchuk.org . Follow us on Twitter and Facebook.

Emily Head | EurekAlert!

Further reports about: DNA NHS Trust blind spots cancer-causing clinical research genes treatments

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>