Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover mechanism that controls the fitness of cells, impacting aging and disease


A novel looping mechanism that involves the end caps of DNA may help explain the aging of cells and how they initiate and transmit disease, according to new research from UT Southwestern Medical Center cell biologists.

The UT Southwestern team found that the length of the endcaps of DNA, called telomeres, form loops that determine whether certain genes are turned off when young and become activated later in life, thereby contributing to aging and disease.

This image shows Dr. Woodring E. Wright, Professor of Cell Biology and Internal Medicine, and Dr. Jerry W. Shay, Professor and Vice Chairman of Cell Biology at UT Southwestern.

Credit: UT Southwestern Medical Center

"Our results suggest a potential novel mechanism for how the length of telomeres may silence genes early in life and then contribute to their activation later in life when telomeres are progressively shortened. This is a new way of gene regulation that is controlled by telomere length," said Dr. Jerry W. Shay, Professor and Vice Chairman of Cell Biology at UT Southwestern, who led the team with his colleague, Dr. Woodring E. Wright, Professor of Cell Biology and Internal Medicine.

Telomeres cap the ends of the cell's chromosomes to protect them from damage. But the telomeres become shorter every time the cell divides. Once they shorten to a critical length, the cell can no longer divide and enters into a senescent or growth-arrest phase in which the cell produces different products compared to a young quiescent cell. Most research in this area has focused on the role that the process plays in cancer, but telomere shortening also has been shown to influence which genes are active or silent.

Dr. Shay and Dr. Wright found that even before the telomeres shorten to the critical length that damages the DNA, the slow erosion in length has an effect on the cell's regulation of genes that potentially contributes to aging and the onset of disease.

The findings, published in the journal Genes and Development, required the researchers to develop new methods for mapping interactions that occur near the endcaps and to use an extensive array of methodologies to verify the impact.

Specifically, the team showed that when a telomere is long, the endcap can form a loop with the chromosome that brings the telomere close to genes previously considered too far away to be regulated by telomere length. Once the telomere and the distant genes on the same chromosome are close to each other, the telomere can generally switch those genes off.

Conversely, when telomeres are short, the chromosome does not form a loop and the telomere can no longer influence whether target genes are switched on or off.

The researchers were able to identify three genes whose expression patterns are altered by telomere length but believe this number is the just the tip of the iceberg.

"We have developed the concept that telomere shortening could be used as a timing mechanism to respond to physiological changes in very long-lived organisms, such as humans, to optimize fitness in an age-appropriate fashion," said Dr. Wright.

The work was supported by the National Institute of Aging, Lung Cancer Specialized Programs of Research Excellence (SPORE), the National Institutes of Health (NIH) Post-doctoral Training Fellowship, the Austrian Science Fund, and the American Federation for Aging Research, in laboratories constructed with support from the NIH.

Other UT Southwestern researchers involved in the work include Postdoctoral Researchers Jerome Robin and Andrew Ludlow, Biostatistical Consultant Kimberly Batten, and Research Scientist Guido Stadler. Dr. Shay and Dr. Wright hold the Southland Financial Corporation Distinguished Chair in Geriatric Research and are members of the Harold C. Simmons Cancer Center.

UT Southwestern's Harold C. Simmons Cancer Center is the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. The Harold C. Simmons Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center's education and training programs support and develop the next generation of cancer researchers and clinicians.

Media Contact: Russell Rian

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering approximately 2,800, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.

This news release is available on our home page at

To automatically receive news releases from UT Southwestern via email, subscribe at

Russell Rian | EurekAlert!

Further reports about: Aging Biology CANCER DNA academic medical centers genes loop mechanism telomere length telomeres

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>