Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover mechanism that controls the fitness of cells, impacting aging and disease

17.11.2014

A novel looping mechanism that involves the end caps of DNA may help explain the aging of cells and how they initiate and transmit disease, according to new research from UT Southwestern Medical Center cell biologists.

The UT Southwestern team found that the length of the endcaps of DNA, called telomeres, form loops that determine whether certain genes are turned off when young and become activated later in life, thereby contributing to aging and disease.


This image shows Dr. Woodring E. Wright, Professor of Cell Biology and Internal Medicine, and Dr. Jerry W. Shay, Professor and Vice Chairman of Cell Biology at UT Southwestern.

Credit: UT Southwestern Medical Center

"Our results suggest a potential novel mechanism for how the length of telomeres may silence genes early in life and then contribute to their activation later in life when telomeres are progressively shortened. This is a new way of gene regulation that is controlled by telomere length," said Dr. Jerry W. Shay, Professor and Vice Chairman of Cell Biology at UT Southwestern, who led the team with his colleague, Dr. Woodring E. Wright, Professor of Cell Biology and Internal Medicine.

Telomeres cap the ends of the cell's chromosomes to protect them from damage. But the telomeres become shorter every time the cell divides. Once they shorten to a critical length, the cell can no longer divide and enters into a senescent or growth-arrest phase in which the cell produces different products compared to a young quiescent cell. Most research in this area has focused on the role that the process plays in cancer, but telomere shortening also has been shown to influence which genes are active or silent.

Dr. Shay and Dr. Wright found that even before the telomeres shorten to the critical length that damages the DNA, the slow erosion in length has an effect on the cell's regulation of genes that potentially contributes to aging and the onset of disease.

The findings, published in the journal Genes and Development, required the researchers to develop new methods for mapping interactions that occur near the endcaps and to use an extensive array of methodologies to verify the impact.

Specifically, the team showed that when a telomere is long, the endcap can form a loop with the chromosome that brings the telomere close to genes previously considered too far away to be regulated by telomere length. Once the telomere and the distant genes on the same chromosome are close to each other, the telomere can generally switch those genes off.

Conversely, when telomeres are short, the chromosome does not form a loop and the telomere can no longer influence whether target genes are switched on or off.

The researchers were able to identify three genes whose expression patterns are altered by telomere length but believe this number is the just the tip of the iceberg.

"We have developed the concept that telomere shortening could be used as a timing mechanism to respond to physiological changes in very long-lived organisms, such as humans, to optimize fitness in an age-appropriate fashion," said Dr. Wright.

The work was supported by the National Institute of Aging, Lung Cancer Specialized Programs of Research Excellence (SPORE), the National Institutes of Health (NIH) Post-doctoral Training Fellowship, the Austrian Science Fund, and the American Federation for Aging Research, in laboratories constructed with support from the NIH.

Other UT Southwestern researchers involved in the work include Postdoctoral Researchers Jerome Robin and Andrew Ludlow, Biostatistical Consultant Kimberly Batten, and Research Scientist Guido Stadler. Dr. Shay and Dr. Wright hold the Southland Financial Corporation Distinguished Chair in Geriatric Research and are members of the Harold C. Simmons Cancer Center.

UT Southwestern's Harold C. Simmons Cancer Center is the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. The Harold C. Simmons Cancer Center includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center's education and training programs support and develop the next generation of cancer researchers and clinicians.

Media Contact: Russell Rian
214-648-3404
russell.rian@utsouthwestern.edu

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering approximately 2,800, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.

This news release is available on our home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

Russell Rian | EurekAlert!

Further reports about: Aging Biology CANCER DNA academic medical centers genes loop mechanism telomere length telomeres

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>