Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists study predator-prey behavior between sharks and turtles


Study is 1 of the first to investigate the 'landscape of fear' model on highly migratory ocean species

A new collaborative study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science & Abess Center for Ecosystem Science & Policy examined predator-prey interactions between tiger sharks and sea turtles off the northwestern Atlantic Ocean.

The tiger shark (Galeocerdo cuvier) is a wide-ranging apex predator distributed across temperate and tropical seas. Tiger sharks possess behavioral and anatomical specializations for hunting sea turtles. The top surface of the shark is darkly pigmented which also allows them to maintain camouflage when hunting turtles resting at the water surface. This study used long-term satellite tagging data from large tiger sharks and adult female loggerhead sea turtles (Caretta caretta) to examine their movements relative to one another and evaluate if turtles modify their behaviors to reduce their chances of shark attack. The results show that turtles do not alter surfacing behavior to risk avoidance but that sharks may modify their behavior in an effort to increase their chance to prey on surfacing turtles.

Credit: Neil Hammerschlag

The research team used long-term satellite tagging data from large tiger sharks and adult female loggerhead sea turtles, common prey of tiger sharks, to examine their movement patterns and evaluate if turtles modify their behaviors to reduce their chances of a shark attack when turtle and shark home ranges overlapped.

The study revealed that tiger sharks undergo seasonal movements to take advantage of turtles nesting off the Carolinas during the summer. Tiger sharks are ambush predators, primarily attack surfacing turtles from below. In theory, loggerhead turtles should reduce their exposure at the surface in regions of high habitat overlap with tiger sharks. However, surprisingly, the researchers found that when shark-turtle overlap in the study region was high, turtles did not alter surfacing behavior to risk avoidance. Whereas, sharks did exhibit modified surfacing behavior believed to enhance predation opportunity.

"We suggest that sharks may not be an important factor influencing the movements of turtles in the study region," said Research Assistant Professor Neil Hammerschlag at the UM Rosenstiel School & Abess Center. "In addition to the unpredictability of a shark attack over such a large area, it is possible that fishing of tiger sharks has reduced their populations to levels that no longer pose a significant threat to turtles, with other factors becoming more important such as the need to avoid boat strikes"

The study is one of the first to test if the "landscape of fear" model, a scientific theory that has been used to explain how animals move and interact with the environment based on their fear of being attacked by their predators, is applicable to large open marine systems involving wide-ranging species, like sharks and turtles.

"This is one of the first studies to compare the large scale, long-term movements of sea turtles with their natural predators, tiger sharks," said study co-author Lucy Hawkes of the University of Exeter's Centre for Ecology and Conservation.

"These data are essential for setting and prioritizing marine protection for these species, which are both of conservation concern," said study co-author Matthew Witt of the University of Exeter's Environment and Sustainability Unit.


The study, titled "Evaluating the landscape of fear between apex predatory sharks and mobile sea turtles across a large dynamic seascape," was published in the July 23 online edition of the journal Ecology. The paper's co-authors include: Hammerschlag, Kyra Hartog, Emily Rose Nelson of the University of Miami; Annette C. Broderick, Brendan J. Godley, Matthew J. Witt and Lucy A. Hawkes of the University of Exeter; John W. Coker, DuBose B. Griffin, Sally R. Murphy, Thomas M. Murphy of the South Carolina Department of Natural Resources; Michael S. Coyne of; Mark Dodd of the Georgia Department of Natural Resources; Michael G. Frick of the University of Florida's Archie Carr Center for Sea Turtle Research; Kristina L. Williams of the Savannah Science Museum's Caretta Research Project; and Matthew H. Godfrey of the North Carolina Wildlife Resources Commission.

The paper can be found here:

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit:

Diana Udel | EurekAlert!

Further reports about: Marine ecology predator-prey sea turtles sharks tiger sharks turtles

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>