Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists spin artificial silk from whey protein

24.01.2017

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's research light source PETRA III, the scientists could watch just how small protein pieces, called nanofibrils, lock together to form a fibre.


Hydrodynamic focussing by means of perpendicular water streams makes protein nanofibrils lock together in a microfibre.

Credit: DESY/Eberhard Reimann

Surprisingly, the best fibres are not formed by the longest protein pieces. Instead, the strongest "silk" is won from protein nanofibrils with seemingly less quality, as the team around Dr. Christofer Lendel and Dr. Fredrik Lundell from the Royal Institute of Technology (KTH) in Stockholm reports in the Proceedings of the U.S. National Academy of Sciences.

Due to its many remarkable characteristics, silk is a material high in demand in many areas. It is lightweight, yet stronger than some metals, and can be extremely elastic. Currently, silk is harvested from farmed silkworms, which is quite costly. "Across the globe, many research teams are working on methods to artificially produce silk," says co-author Prof. Stephan Roth from DESY who is an adjunct professor at KTH Stockholm. "Such artificial materials can also be modified to have new, tailor-made characteristics and can serve for applications like novel biosensors or self-dissolving wound dressings, for example."

However, imitating nature proved especially hard in the case of silk. The Swedish team focuses on self-assembling materials. "That's a quite simple process," explains Lundell. "Some proteins assemble themselves into nanofibrils under the right conditions. A carrier fluid with these protein nanofibrils is then pumped through a small canal. Additional water enters perpendicular from the sides and squeezes the fibrils together until they stick together and form a fibre."

The latter process is called hydrodynamic focussing, and Lundell's team has used it before for producing artificial wood fibres from cellulose fibrils. "In fact, the process has several similarities with the way spiders produce their silk threads," says Lendel.

In the new study, the nanofibrils were formed by a protein from cow's whey under the influence of heat and acid. The fibrils shape and characteristics strongly depend on the protein concentration in the solution. At less than four per cent, long, straight and thick fibrils form. They can be up to 2000 nanometres long and 4 to 7 nanometres thick. But at an only slightly higher protein concentration of six per cent or more in the initial solution, the fibrils remain much shorter and thinner with an average length of just 40 nanometres and a thickness of 2 to 3 nanometres. Also, they are curved looking like tiny worms and 15 to 25 times softer than the long, straight fibrils.

In the lab, however, the short and curved fibrils formed much better fibres than the long and straight fibrils. With DESY's bright X-ray light, the researchers could find out why: "The curved nanofibrils lock together much better than the straight ones. The X-ray diffraction patterns show that they largely keep their rather random orientation in the final fibre," says Roth, head of the beamline P03 at PETRA III where the experiments took place.

"The strongest fibres form when a sufficient balance between ordered nanostructure and fibril entanglement is kept," adds Lendel. "Natural silk is an even more complex structure with evolutionary optimized proteins that assemble in a way with both, highly ordered regions - so-called beta-sheet - that give strength and regions with low order that give flexibility. However, the structures of the artificial and natural fibers are essentially different. In particular, the protein chains in natural silk have a larger number of intermolecular interactions that cross-link the proteins and result in a stronger fiber."

In their experiments, the researchers obtained artificial silk fibres that were roughly five millimetres long and of medium quality. "We used the whey protein to understand the underlying principle in detail. The whole process can now be optimised to obtain fibres with better or new, tailor-made properties," says Lendel. This way, the results of the study could help to develop materials with novel features, for example artificial tissue for medical applications.

###

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference

Flow-assisted assembly of nanostructured protein microfibers; Ayaka Kamada, Nitesh Mittal, L. Daniel Söderberg, Tobias Ingverud, Wiebke Ohm, Stephan Roth, Fredrik Lundell, Christofer Lendel; Proceedings of the National Academy of Sciences (PNAS), 2017; DOI: 10.1073/pnas.1617260114

Media Contact

Dr. Thomas Zoufal
presse@desy.de
49-408-998-1666

 @desynews

http://www.desy.de 

Dr. Thomas Zoufal | EurekAlert!

Further reports about: DESY Elektronen-Synchrotron PETRA III X-ray artificial fibrils nanometres proteins silk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>