Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map the portal to the cell's nucleus

16.03.2018

Like an island nation, the nucleus of a cell has a transportation problem. Evolution has enclosed it with a double membrane, the nuclear envelope, which protects DNA but also cuts it off from the rest of the cell. Nature's solution is a massive--by molecular standards--cylindrical configuration known as the nuclear pore complex, through which imports and exports travel, connecting the bulk of the cell with its headquarters.

In research described March 14 in Nature, scientists at Rockefeller University and their colleagues have delineated the architecture of the nuclear pore complex in yeast cells. The biological blueprint they uncovered shares principles sometimes seen on a much larger scale in concrete, steel, and wire.


A map showing how the 552 pieces of the pore complex fit together could inform research into numerous diseases.

Credit: The Rockefeller University

Usage Restrictions: Video may be used only to illustrate the research described in the accompanying release.

"It reminds us of a suspension bridge, in which a combination of sturdy and flexible parts produce a stress-resilient structure," says Michael P. Rout, who led the work together with Brian T. Chait.

The pore complex contains 552 component proteins, called nucleoporins, and scientists hadn't previously known how they all fit together. It took a combination of approaches to assemble a comprehensive map of these pieces. The researchers hope this new molecular structure will enable new studies of how the nuclear portal functions normally, and how defects in it lead to diseases such as cancer.

A milestone

The pore complex first emerged when single-celled organisms--the only living things at the time--acquired special compartments containing organ-like structures, including the nucleus, which houses the cell's genetic code.

It serves not only as a conduit to and from the nucleus, but also as a checkpoint regulating what passes in and out. Genetic instructions transcribed into RNA are allowed to exit, for example, while proteins needed inside the nucleus may enter. Other things, such as viruses bent on taking over the cell, are kept at bay.

Rout and Chait began mapping this ancient structure more than 20 years ago, knowing the project could well span decades since the target of their curiosity is not easily defined.

More than a third of the pore complex can move about, and this flexibility, along with the structure's immense size and the constant stream of traffic passing through it, meant that no single approach to mapping it would work. "In the end, we used everything we could lay our hands on, brought the results together, and integrated them into a single structure," says Chait, who is Rockefeller's Camille and Henry Dreyfus Professor.

Together with researchers at the University of California, San Francisco; Boston University Medical School; and Baylor College of Medicine, the team was able to determine the type and amount of each nucleoporin and their proximities to one another, as well as the weight and shape of the whole complex.

This data allowed them to visualize the anatomy of many of the individual pore components and to place them all within the pore complex. They uncovered a complicated ringed structure containing rigid, diagonal columns and flexible connectors that evoke the towers and cables of human-made structures like the Golden Gate Bridge.

The resulting map is a breakthrough in a line of investigation with a deep Rockefeller history. The pore complex first came into human view in the 1950s, when a university scientist, Michael Watson, observed small densities dotting the surface of the nuclear envelope. And about two decades later, the lab of Günter Blobel, who passed away last month, was among the first to discover individual nups and then determine their structure.

A new starting point

When it comes to the pore complex, yeast has a considerable amount in common with us. When the team compared their data with structural findings from human pore complexes, they found similar elements arranged somewhat differently. The resemblance suggests the yeast pore complex could be useful for research relevant to humans.

And there's a lot of such research to be done. Defects in the pore complex and its components have been linked to a host of diseases, including autoimmune disorders and cancer; meanwhile, viruses have evolved ways to sneak past it altogether. But the details of these malfunctions and blind spots are often obscure.

The new yeast structure may help. With it, the team found they could map sites that are altered in some cancers--evidence, they say, that the yeast pore complex can be used to test how factors like stress, drugs, or mutations change the human structure, and so aiding efforts to understand and treat disease.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>