Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Grow Cartilage to Reconstruct Nose

11.04.2014

Scientists at the University of Basel report first ever successful nose reconstruction surgery using cartilage grown in the laboratory. Cartilage cells were extracted from the patient’s nasal septum, multiplied and expanded onto a collagen membrane. The so-called engineered cartilage was then shaped according to the defect and implanted. The results will be published in the current edition of the academic journal “The Lancet”.

A research team from the University of Basel in Switzerland has reported that nasal reconstruction using engineered cartilage is possible. They used a method called tissue engineering where cartilage is grown from patients’ own cells.


Made from a probe of the nasal septum: white, glossy cartilage made in the laboratory

(Figure: Department of Biomedicine at the University of Basel)

This new technique was applied on five patients, aged 76 to 88 years, with severe defects on their nose after skin cancer surgery. One year after the reconstruction, all five patients were satisfied with their ability to breathe as well as with the cosmetic appearance of their nose. None of them reported any side effects.

Cells from the nasal septum

The type of non-melanoma skin cancer investigated in this study is most common on the nose, specifically the alar wing of the nose, because of its cumulative exposure to sunlight. To remove the tumor completely, surgeons often have to cut away parts of cartilage as well.

Usually, grafts for reconstruction are taken from the nasal septum, the ear or the ribs and used to functionally reconstruct the nose. However, this procedure is very invasive, painful and can, due to the additional surgery, lead to complications at the site of the excision.

Together with colleagues from the University Hospital, the research team from the Department of Biomedicine at the University of Basel has now developed an alternative approach using engineered cartilage tissue grown from cells of the patients’ nasal septum. They extracted a small biopsy, isolated the cartilage cells (chondrocytes) and multiplied them.

The expanded cells were seeded onto a collagen membrane and cultured for two additional weeks, generating cartilage 40 times the size of the original biopsy. The engineered grafts were then shaped according to the defect on the nostril and implanted.

New possibilities for facial reconstruction

According to Ivan Martin, Professor for Tissue Engineering at the Department of Biomedicine at the University and University Hospital of Basel, “The engineered cartilage had clinical results comparable to the current standard surgery. This new technique could help the body to accept the new tissue better and to improve the stability and functionality of the nostril.

Our success is based on the long-standing, effective integration in Basel between our experimental group at the Department of Biomedicine and the surgical disciplines at the University Hospital. The method opens the way to using engineered cartilage for more challenging reconstructions in facial surgery such as the complete nose, eyelid or ear.”

The same engineered grafts are currently being tested in a parallel study for articular cartilage repair in the knee. Despite the optimistic perspectives, the use of these procedures in the clinical practice is still rather distant. “We need rigorous assessment of efficacy on larger cohorts of patients and the development of business models and manufacturing paradigms that will guarantee cost-effectiveness”, says Martin.

Original source
Ilario Fulco, Sylvie Miot, Martin D Haug, Andrea Barbero, Anke Wixmerten, Sandra Feliciano, Francine Wolf, Gernot Jundt, Anna Marsano, Jian Farhadi, Michael Heberer, Marcel Jakob, Dirk J Schaefer, Ivan Martin
Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial
The Lancet

Further information
Prof. Dr. Ivan Martin, Department of Biomedicine at the University and University Hospital Basel, phone: +41 (0)61 265 23 84, email: ivan.martin@unibas.ch
Anke Wixmerten, Department of Biomedicine at the University and University Hospital Basel, phone: +41 (0)61 328 73 76, E-Mail: anke.wixmerten@usb.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>