Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists from MIPT gain insights into 'forbidden' chemistry


Scientists have discovered what causes the stability of various compounds that are not commonly found in 'textbook' chemistry

Gabriele Saleh, a research fellow at MIPT, and Prof. Artem Oganov, a Laboratory Supervisor at MIPT and Professor at the Skolkovo Institute of Science and Technology (Skoltech), have discovered what causes the stability of various compounds that are not commonly found in 'textbook' chemistry.

The structures of 'textbook' NaCl (left) and 'forbidden' A3Y (A=Li, Na, K; Y= Cl, Br) (right) are shown.

Credit: MIPT press office

The reorganisation of the chemical interactions results in the stability of the 'new' structure of the compounds. The results of the study have been published in the journal Physical Chemistry & Chemical Physics.

Oganov and Saleh derived a simple model and formulated the basic principles of stability of 'forbidden' substances. In addition, the scientists updated the phase diagram of compounds formed by Na and Cl: they added one new compound, Na4Cl3, and two new phases of Na3Cl. The research was conducted using the USPEX algorithm combined with quantum mechanical calculations.

"We showed how the insights gained in the present study can be used to rationalize the stability of recently discovered high-pressure compounds," say the authors in their paper.

In a previous experiment, Oganov and his colleagues discovered several 'forbidden' compounds- Na3Cl, NaCl3, NaCl7,and even Na3Cl2. These compounds are only stable under extreme pressure (approximately 200,000 atmospheres) and they decompose under normal conditions on Earth. However, understanding how new compounds become stable under high pressure is of utmost importance for planetary science.

The principle that explains the unusual ratio of Na and Cl atoms in 'forbidden' compounds is that the number of interactions between Na and Cl atoms increases while interactions between sodium atoms break down.

The interactions between neighbouring atoms in a crystal are responsible for the structure and properties of the crystal (remember carbon and graphite).

Upon formation of these 'forbidden compounds', new Na-Cl interactions are formed at the expenses of Na-Na metallic bonds. The competition between these two bonding types, influenced by pressure, determines the peculiar structures of the newly discovered compounds.

In addition to explaining the stability of sodium subchlorides, Saleh and Oganov suggested that Na could be replaced by any alkali metal, and Cl could be replaced by any heavier halogen. As a result, the model can be used to study the properties of alkali subhalides and predict their stability.

The formation of alkali subhalides, and the mechanism responsible for it, were investigated by considering the reaction: 2Na +NaCl ->Na3Cl. Or more generally: 2A + AY -> A3Y (A=Li, Na, K; Y= F, Cl, Br). Along this reaction, additional bonds and interactions are formed and the coordination number (that is the number of interactions a given atom forms) of halogens increases.

The calculations made by Oganov and Saleh have demonstrated that in addition to the compounds discovered in 2013, Na4Cl3 is also stable, and Na3Cl has two new structures. The investigation of the stability of substances formed along the reaction 2A + AY -> A3Y (A=Li, Na, K; Y= F, Cl, Br) led the authors to predict that Li3Cl, Li3Br, and Na3Br are stable under pressure. All three of these subhalides have a structure similar to the structure of Na3Cl, which was discovered previously.

Each rule must have its exceptions - K3Br and K3Cl, for example, display completely different structures. The researchers demonstrated that this different behaviour can be traced back to potassium (K) having energetically accessible d-orbitals, which is not the case for lithium and sodium. Under pressure, these orbitals come into play and form different chemical bonds with respect to those observed in lithium and sodium compounds.

Computer-aided design of materials is a new and promising field of materials science. Thanks to modern computing facilities and algorithms, scientists are able to predict the structure and properties of compounds, which will significantly increase the speed and reduce the cost of manufacturing the materials of the future.

Media Contact

Valerii Roizen


Valerii Roizen | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>