Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find brain cells that know which end is up

09.03.2016

People are intuitive physicists, knowing from birth how objects under the influence of gravity are likely to fall, topple or roll. In a new study, scientists have found the brain cells apparently responsible for this innate wisdom.

In a part of the brain responsible for recognizing color, texture and shape, Johns Hopkins University researchers found neurons that used large-scale environmental cues to infer the direction of gravity. The findings, forthcoming this month in the journal Current Biology, and just posted online, suggest these cells help humans orient themselves and predict how objects will behave.


These images used in the study provoked some of the strongest response from neurons that help the rhesus monkeys subjects understand the direction of gravity.

Credit: Johns Hopkins University

"Gravity is a strong ubiquitous force in our world," said senior author Charles E. Connor, a professor of neuroscience and director of the university's Zanvyl Krieger Mind/Brain Institute. "Our results show how the direction of gravity can be derived from visual cues, providing critical information about object physics as well as additional cues for maintaining posture and balance."

Connor, along with lead author Siavash Vaziri, a former Johns Hopkins postdoctoral fellow, studied individual cells in the object area of the rhesus monkey brain, a remarkably close model for the organization and function of human vision. They measured responses of each cell to about 500 abstract three-dimensional shapes presented on a computer monitor. The shapes ranged from small objects to large landscapes and interiors.

They found that a given cell would respond to many different stimuli, especially large planes and sharp, extended edges. What tied these stimuli together was their alignment in the same tilted rectilinear reference frame. These cells, sensitive to different tilts, could provide a continuous signal for the direction of gravity, even as a person constantly moves.

In other words, Connor said, these neurons could help people understand which way is up.

"The world does not appear to rotate when the head tilts left or right or gaze tilts up or down, even though the visual image changes dramatically," he said. "That perceptual stability must depend on signals like these that provide a constant sense of how the visual environment is oriented."

The researchers' initial discovery of cells sensitive to large-scale shape, reported in Neuron in 2014, was surprising because they found them in a brain region long regarded as dedicated exclusively to object vision. The new findings make sense of this anatomical juxtaposition, since knowing the gravitational reference frame is critical for predicting how objects will behave.

"When we dive after a ball in tennis, the whole visual world tilts, but we maintain our sense of how the ball will fall and how to aim our next shot," Connor said. "The visual cortex generates an incredibly rich understanding of object structure, materials, strength, elasticity, balance, and movement potential. These are the things that make us such expert intuitive physicists."

###

The study was supported by National Institutes of Health grant EY024028.

Media Contact

Jill Rosen
jrosen@jhu.edu
443-997-9906

 @JohnsHopkins

http://www.jhu.edu 

Jill Rosen | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>