Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decode bacterial enzyme / Possible approach to tackle infections from hospital germs

29.03.2016

Microbiologists at the Universities of Münster and Nottingham, in England, have analysed an enzyme which might play an important role in the treatment of infections from the hospital germ pseudomonas aeruginosa. They have decoded the three-dimensional structure of the enzyme and revealed its function.

So-called hospital germs are a big worry for physicians and hygiene specialists as these bacteria can spell danger for people with a weakened immune system. This is especially true when the germs are resistant to one or more antibiotics and surround themselves with a so-called biofilm as a sort of protective shield.


Doctoral student Steffen Drees and Prof. Susanne Fetzner

Photo: WWU/Franziska Birmes

Microbiologists at the Universities of Münster and Nottingham, in England, have now analysed an enzyme which might play an important role in the treatment of infections from the hospital germ Pseudomonas aeruginosa. They have decoded the three-dimensional structure of the enzyme and revealed its function.

Their work has been published in the latest issue of the Journal of Biological Chemistry and has been given prominence as "Paper of the Week". This special honour is awarded to a maximum of 100 articles among the 6,600 and more that are published in the Journal every year.

The Pseudomonas aeruginosa bacterium is the fourth most common pathogen worldwide causing hospital-acquired infections. The germ is widespread and can be found for example in damp places such as washing basins and showers. In the case of people who have a history of illnesses or a weakened immune system, the germ can lead to pneumonia and blood poisoning, among others.

"The bacterium is something that hospital hygienists fear," says Prof. Susanne Fetzner, who initiated the project – funded by the German Research Foundation (DFG) – and headed the Münster side of it. Pseudomonas aeruginosa forms a large number of so-called virulence factors. These include cytotoxins and tissue-damaging enzymes which help the bacteria to repel a person’s immune defence and make it easier for the pathogens to spread in the body.

As problems resulting from resistances to antibiotics are on the increase, scientists worldwide are following up new therapeutic techniques. These include the development of substances with an anti-virulent effect which do not impede the growth of bacteria, but instead block the formation of the virulence factors.

The enzyme the scientists in Münster and Nottingham analysed plays an important role in the production of the virulence factors of Pseudomonas aeruginosa. If this enzyme could be deactivated though medication, the bacteria would not develop pathogenic properties in the first place.

Steffen Drees, a doctoral student and the lead author of the study, explains this approach: "Bacteria such as Pseudomonas aeruginosa have a very interesting property: they communicate with one another by means of signal molecules. This enables them to sense how many bacterial cells there are in their vicinity. Only when the 'army' is strong enough the bacteria will start to produce their virulence factors.

If the enzyme we have analysed were blocked by means of medication, the bacteria would no longer be able to form any signal molecules. This means they would not notice that the population had reached the necessary high density of bacterial cells – and, accordingly, they would not form any virulence factors."

This enzyme is not the only bacterial protein which could be a target for therapeutic agents at the molecular level. Other studies show alternatives. "The enzyme we have analysed, however, is particularly promising," says biologist Susanne Fetzner, "because it is a key enzyme in the formation of signal molecules – and therefore of virulence factors." The scientists see their work as a first step towards a possible new therapy. "First you need to understand an enzyme in order to be able to develop agents which can deactivate it. And that we have achieved."

Original publication:

Drees S. L., Li C., Prasetya F., Saleem M., Dreveny I., Williams P., Hennecke U., Emsley J. und Fetzner S. (2016): PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. The Journal of Biological Chemistry; doi: 10.1074/jbc.M115.708453

Weitere Informationen:

http://www.jbc.org/content/291/13/6610.abstract Online version of the original publication
http://www.jbc.org/content/291/13.cover-expansion Cover image of the "Paper of the Week"

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>