Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decode bacterial enzyme / Possible approach to tackle infections from hospital germs

29.03.2016

Microbiologists at the Universities of Münster and Nottingham, in England, have analysed an enzyme which might play an important role in the treatment of infections from the hospital germ pseudomonas aeruginosa. They have decoded the three-dimensional structure of the enzyme and revealed its function.

So-called hospital germs are a big worry for physicians and hygiene specialists as these bacteria can spell danger for people with a weakened immune system. This is especially true when the germs are resistant to one or more antibiotics and surround themselves with a so-called biofilm as a sort of protective shield.


Doctoral student Steffen Drees and Prof. Susanne Fetzner

Photo: WWU/Franziska Birmes

Microbiologists at the Universities of Münster and Nottingham, in England, have now analysed an enzyme which might play an important role in the treatment of infections from the hospital germ Pseudomonas aeruginosa. They have decoded the three-dimensional structure of the enzyme and revealed its function.

Their work has been published in the latest issue of the Journal of Biological Chemistry and has been given prominence as "Paper of the Week". This special honour is awarded to a maximum of 100 articles among the 6,600 and more that are published in the Journal every year.

The Pseudomonas aeruginosa bacterium is the fourth most common pathogen worldwide causing hospital-acquired infections. The germ is widespread and can be found for example in damp places such as washing basins and showers. In the case of people who have a history of illnesses or a weakened immune system, the germ can lead to pneumonia and blood poisoning, among others.

"The bacterium is something that hospital hygienists fear," says Prof. Susanne Fetzner, who initiated the project – funded by the German Research Foundation (DFG) – and headed the Münster side of it. Pseudomonas aeruginosa forms a large number of so-called virulence factors. These include cytotoxins and tissue-damaging enzymes which help the bacteria to repel a person’s immune defence and make it easier for the pathogens to spread in the body.

As problems resulting from resistances to antibiotics are on the increase, scientists worldwide are following up new therapeutic techniques. These include the development of substances with an anti-virulent effect which do not impede the growth of bacteria, but instead block the formation of the virulence factors.

The enzyme the scientists in Münster and Nottingham analysed plays an important role in the production of the virulence factors of Pseudomonas aeruginosa. If this enzyme could be deactivated though medication, the bacteria would not develop pathogenic properties in the first place.

Steffen Drees, a doctoral student and the lead author of the study, explains this approach: "Bacteria such as Pseudomonas aeruginosa have a very interesting property: they communicate with one another by means of signal molecules. This enables them to sense how many bacterial cells there are in their vicinity. Only when the 'army' is strong enough the bacteria will start to produce their virulence factors.

If the enzyme we have analysed were blocked by means of medication, the bacteria would no longer be able to form any signal molecules. This means they would not notice that the population had reached the necessary high density of bacterial cells – and, accordingly, they would not form any virulence factors."

This enzyme is not the only bacterial protein which could be a target for therapeutic agents at the molecular level. Other studies show alternatives. "The enzyme we have analysed, however, is particularly promising," says biologist Susanne Fetzner, "because it is a key enzyme in the formation of signal molecules – and therefore of virulence factors." The scientists see their work as a first step towards a possible new therapy. "First you need to understand an enzyme in order to be able to develop agents which can deactivate it. And that we have achieved."

Original publication:

Drees S. L., Li C., Prasetya F., Saleem M., Dreveny I., Williams P., Hennecke U., Emsley J. und Fetzner S. (2016): PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. The Journal of Biological Chemistry; doi: 10.1074/jbc.M115.708453

Weitere Informationen:

http://www.jbc.org/content/291/13/6610.abstract Online version of the original publication
http://www.jbc.org/content/291/13.cover-expansion Cover image of the "Paper of the Week"

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>