Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create first map of the wheat epigenome

10.12.2015

Scientists at the University of Liverpool have carried out the first ever genome-wide survey of heritable molecular changes that regulate gene activity in wheat, in what could become a new tool to improve crop breeding technologies.

Epigenetic marks are chemical tags which physically attach themselves to DNA, and modify its function without changing the genetic code. DNA methylation is one such mechanism of epigenetic gene expression control that can be passed down to future generations.


This image shows the wheat fields.

Credit: Professor Anthony Hall

Now, developing technology has allowed scientists to study DNA methylation across the complex and challenging wheat genome.

Dr Laura Gardiner, from the University's Centre for Genomic Research, said: "Due to the sheer size of the wheat genome, undertaking a survey like this has been technically unworkable until now, but understanding how and when genes are activated is a key part of understanding its complexity.

"This work opens up a whole new level of genetic variation which can be exploited by wheat breeders. In the future we see epigenetic marks becoming an important new tool in this area."

Using a combination of sodium bisulphate treatment and targeted gene enrichment, the team observed that methylation is highly conserved across all three genomes of hexaploid wheat, but found evidence of sub-genome specific methylation.

Methylation changes were also found to be associated with changes in gene-expression and, although not demonstrated, these changes are likely to affect the phenotype. The stability of methylation in the wheat genome was also shown, with some methylation patterns conserved for over 0.5 million years.

Liverpool scientists created the first draft of the wheat genome in 2012, enabling new levels of precision breeding for this globally important food source which provides 20% of daily calories and protein for the world's population.

Professor Anthony Hall, who led the study, added: "With the ability to characterise genome-wide patterns of methylation we can now address fundamental questions in wheat, such as the role of epigenetics in the domestication of crops and the stability and long-term function of methylation.

"We can also seek to understand how methylation changes important traits for farmers like disease resistance and yield variability. These are all key topics for future research at Liverpool and will impact on world agriculture."

###

The project was funded as part of the ERA-CAPS programme, with support from the Biotechnology and Biological Sciences Research Council (BBSRC).

The paper "A genome-wide survey of DNA methylation in hexaploid wheat" is published in Genome Biology.

Media Contact

Nicola Frost
nicola.frost@liverpool.ac.uk
01-510-795-9620

 @livuninews

http://www.liv.ac.uk 

Nicola Frost | EurekAlert!

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>