Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schizophrenia: Impaired activity of the selective dopamine neurons

17.02.2015

German-American team of researchers finds neurophysiological correlates for cognitive and emotional symptoms in a Schizophrenia mouse model.

Schizophrenia is not only associated with positive symptoms such as hallucinations and delusions, but also with negative symptoms e.g. cognitive deficits and impairments of the emotional drive. Until now, the underlying mechanisms for these negative symptoms have not been well characterized.

In the current edition of the Proceedings of the National Academy of Sciences (PNAS) a German-American team of researchers, with the cooperation of the Goethe University, reports that a selective dopamine midbrain population that is crucial for emotional and cognitive processing shows reduced electrical in vivo activity in a disease mouse model.

Schizophrenia is a severe and incurable psychiatric illness, which affects approximately one percent of the world population. While acute psychotic states of the disease have been successfully treated with psychopharmaceutical drugs (antipsychotic agents) for many decades, cognitive deficits and impairments of motivation do not respond well to standard drug therapy.

This is a crucial problem, as the long-term prognosis of a patient is determined above all by the severity of these negative symptoms. Therefore, the shortened average life-span of about 25 years for schizophrenia patients remained largely unaltered in recent decades.

"In order to develop new therapy strategies we need an improved neurobiological understanding of the negative symptoms of schizophrenia" explains Prof. Roeper of the Institute for Neurophysiology of the Goethe University. His American colleagues, Prof. Eleanor Simpson and Prof. Eric Kandel at Columbia University in New York recently made an important initial step in this direction.

They created a new transgenic mouse model based on striatal overexpression of dopamine typ 2 receptors, which displayed typical signs of cognitive and emotional negative symptoms similar to those occurring in patients with schizophrenia. The researchers detected typical impairment in working memory with corresponding neurochemical changes in dopamine in the prefrontal cortex. However, the underlying neurophysiological impairments of dopamine neurons remained unresolved.

Now, Prof. Eleanor Simpson and Prof. Jochen Roeper, in cooperation with the mathematician Prof. Gaby Schneider of the Goethe University and the physiologist Prof. Birgit Liss of the University of Ulm have succeeded in defining the neurophysiological impairments with the dopamine system. They were able to show, with single cell recordings in the intact brain of mice, that those dopamine midbrain neurons responsible for emotional and cognitive processing displayed altered patterns and frequencies of electrical activity. In contrast, adjacent dopamine neurons, which are involved in motor control, were not affected.

The researchers were also able to show that – in line with the persistence of cognitive deficits in mice and patients– the pathological discharge patterns of dopamine neurons persisted even after the causal transgene had been switched off in adult mice. "This result emphasizes the presence of a critical early phase for the development of cognitive deficits in schizophrenia" according to Roeper. He and his colleagues are currently examining how the neuronal activity of dopamine neurons changes during the working memory tasks. "Our results show that altered neuronal activity of selective dopamine neurons is crucial for schizophrenia", Jochen Roeper summarises the importance of the research work.

Publication:
Krabbe et al.: Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area, in PNAS 9.2.2015, www.pnas.org/cgi/doi/10.1073/pnas.1500450112

Information: Prof. Jochen Roeper, Institute for Neurophysiology, Campus Niederrad, Tel.: +49 (0)69 6301-84091, roeper@em.uni-frankfurt.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main
Editor: Dr. Anne Hardy, Officer of Science Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>