Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sarcoidosis: surface marker allows new diagnostic approaches

23.10.2015

A team of scientists at the Helmholtz Zentrum München together with colleagues of the Ludwig Maximilians University Munich recently developed a new strategy to determine monocyte subsets involved in diseases. The results published in the journal ‘Blood’ could help facilitating the diagnosis of sarcoidosis and may improve the respective patient management.

Monocytes are white blood cells that are crucial to human immune defense. They are precursor cells of macrophages and dendritic cells and are circulating in the blood until they invade their respective target tissue where they defend the body against exogenous structures. So far, scientist categorized subtypes of monocytes only with regards to the surface markers CD14 and CD16* – however, this might change in the future.


Dr. Thomas Hofer and Dr. Marion Frankenberger

Source: Helmholtz Zentrum München (HMGU)

Surface molecule as new marker

In the current study, the team headed by Prof. Loems Ziegler-Heitbrock was able to show that the analysis of an additional marker molecule called slan allows a more precise determination of monocyte subgroups. The results of the researchers show that this classification might also lead to a better understanding of certain diseases.

Targeting sarcoidosis

To this end Dr. Thomas Hofer and Dr. Marion Frankenberger, scientists of the Comprehensive Pneumology Center (CPC) at Helmholtz Zentrum München, analyzed blood samples of patients suffering from sarcoidosis. This disease, which often leads to damage of the patients’ lungs, is caused by a strong immune reaction and a concomitant formation of nodules in the tissue. The underlying mechanisms are still unclear but scientists are convinced that monocytes play a critical role. “Our data clearly indicate which subtype of the monocytes is involved in the disease”, explains Hofer. “In the patients’ blood we found significant numbers of monocytes, which were positive for CD16 and negative for slan.” According to Hofer, these cells might play a major role in sarcoidosis.

Also a role in brain disease

Moreover, in further experiments the scientist found that the marker slan might also serve to gain insights into a brain disease: “To test the predictive value of our new diagnostic tool, we also analyzed samples of patients suffering from HDLS**, a disease which leads to destruction of neurons of the brain”, said Frankenberger. “Our results show that a clearly definable subgroup of monocytes (CD16 positive/slan positive) was almost absent in the blood of these patients. Therefore we presume that these cells are important for normal brain function”, explains the Co-author.

“With this novel approach we now have a new diagnostic tool and we expect this to have an impact in many areas of medicine”, concludes principle investigator Ziegler-Heitbrock. “In the future we are planning to investigate whether slan might also lead to new insights with regards to other diseases.”

Further information

Background:
* The number of CD16 positive monocytes is increased in many infectious diseases. Since 2010 these proinflammatory cells can be subdivided according to cell surface markers: Classical monocytes (CD14++CD16−), Intermediate monocytes (CD14++CD16+) and Non-classical monocytes (CD14+CD16++). The results of the current study allow for a clear classification of these cells.

** HDLS stands for hereditary diffuse leukoencephalopathy with spheroids. This adult-onset disease affects the brain by degrading the myelin sheath of neurons and leads to the formation of so called spheroids. This leads to a progressive cognitive and motor dysfunction.

The study is the result of a co-operation of the Helmholtz researchers with the Department of Internal Medicine IV, Saarland University Medical Center, with the Asklepios Fachklinik in Muenchen-Gauting and with the Department of Neurology of the Ludwig Maximilians University in Munich.

Original publication:
Hofer, T. et al. (2015). Slan-defined subsets of CD16-positive Monocytes: Impact of granulomatous Inflammation and M-CSF-Receptor Mutation, Blood, DOI: 10.1182/blood-2015-06-651331 http://dx.doi.org/10.1182/blood-2015-06-651331

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of major common diseases such as diabetes and lung disease. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. The Helmholtz Zentrum München is a partner in the German Center for Diabetes Research. http://www.helmholtz-muenchen.de/en/index.html

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL). http://www.helmholtz-muenchen.de/ilbd/index.html

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Thomas Hofer, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Ingolstädter Landstr. 1, 85764 Neuherberg - Phone +49 89 3187 1888 - E-mail: hofer@helmholtz-muenchen.de

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CPC Department Environmental Environmental Health Pneumology Sarcoidosis blood diseases monocytes

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>