Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same switches program taste and smell in fruit flies

04.02.2016

Findings help explain how complex nervous systems arise from few genes

A new study sheds light on how fruit flies get their keen sense of smell.


Concentric rings in a fruit fly larva's antenna result from a set of genetic control "switches" that interact early in a fly's development to generate dozens of types of specialized nerve cells for smell. The Duke researchers who made this discovery say it may help explain how a relatively small number of genes can create the dazzling array of different cell types found in human brains and the nervous systems in other animals.

Photo by Tristan Qingyun Li, Duke University

Duke University biologist Pelin Volkan and colleagues have identified a set of genetic control switches that interact early in a fly's development to generate dozens of types of olfactory neurons, specialized nerve cells for smell.

The same gene network also plays a role in programming the fly neurons responsible for taste, the researchers report in the journal PLOS Genetics.

The findings do more than merely explain how a household pest distinguishes rotting vegetables from ripening fruit, the authors say. The research could be a key to understanding how the nervous systems of other animals -- including humans, whose brains have billions of neurons -- produce such a dazzling array of cell types from a modest number of genes.

Fruit flies rely on their keen sense of smell to tell the difference between good food and bad, safety and danger, potential mates and those off-limits. The tiny insects perceive this wide range of chemical cues through a diverse set of olfactory sensory neurons along their antennae. More than 2000 such neurons are organized into 50 types, each of which transmits information to a specific region of the fly's poppy seed-sized brain.

"Each neuron type detects a very specific range of odors," Volkan said. Certain odors from fermenting fruit, for example, activate one class of neurons, and carbon dioxide activates another.

Volkan is interested in how the many types of smell neurons come to be as a fruit fly develops from egg to an adult.

Smell neurons begin as identical precursor cells, immature cells that have not yet "decided" which type of nerve cell they will become. All precursor cells have the same DNA, and how they produce one neuron type versus another was unknown.

One way to get many types of cells or proteins from the same genetic starting material is by mixing and matching different parts of one gene to produce multiple gene readouts, a phenomenon known as alternative splicing. The team's results point to another strategy, however: using the same genes in different combinations, or "combinatorial coding."

By tweaking different fly genes and counting how many neuron types were produced as the flies matured, the team identified a network of five genes that work together like coordinated control switches to guide the precursor cells' transformation to mature neurons. The genes regulate each other's activity, interacting in unique combinations to set each precursor cell on a distinct path by turning on different olfactory receptors in each cell.

The researchers found that manipulating the network had similar effects in the legs, which flies use not only to walk but also to taste. "The same basic toolkit gives rise to diverse types of neurons in completely different tissues," said Volkan, who is also a member of the Duke Institute for Brain Sciences.

Several of the network genes Volkan and her team identified have counterparts in humans and other vertebrates, which suggests the same basic mechanism could be at work in building the nervous system in other animals too.

###

Authors include Qingyun Li, Scott Barish, Sumie Okuwa and Abigail Maciejewski of Duke, Alicia Brandt and Corbin Jones of University of North Carolina-Chapel Hill and Dominik Reinhold of Clark University.

This research was supported by the National Science Foundation (1457690).

CITATION: "A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity," Qingyun Li et al. PLOS Genetics, January 2016. DOI: 10.1371/journal.pgen.1005780

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

Further reports about: flies fruit flies neurons precursor cells sense of smell

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>