Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same switches program taste and smell in fruit flies

04.02.2016

Findings help explain how complex nervous systems arise from few genes

A new study sheds light on how fruit flies get their keen sense of smell.


Concentric rings in a fruit fly larva's antenna result from a set of genetic control "switches" that interact early in a fly's development to generate dozens of types of specialized nerve cells for smell. The Duke researchers who made this discovery say it may help explain how a relatively small number of genes can create the dazzling array of different cell types found in human brains and the nervous systems in other animals.

Photo by Tristan Qingyun Li, Duke University

Duke University biologist Pelin Volkan and colleagues have identified a set of genetic control switches that interact early in a fly's development to generate dozens of types of olfactory neurons, specialized nerve cells for smell.

The same gene network also plays a role in programming the fly neurons responsible for taste, the researchers report in the journal PLOS Genetics.

The findings do more than merely explain how a household pest distinguishes rotting vegetables from ripening fruit, the authors say. The research could be a key to understanding how the nervous systems of other animals -- including humans, whose brains have billions of neurons -- produce such a dazzling array of cell types from a modest number of genes.

Fruit flies rely on their keen sense of smell to tell the difference between good food and bad, safety and danger, potential mates and those off-limits. The tiny insects perceive this wide range of chemical cues through a diverse set of olfactory sensory neurons along their antennae. More than 2000 such neurons are organized into 50 types, each of which transmits information to a specific region of the fly's poppy seed-sized brain.

"Each neuron type detects a very specific range of odors," Volkan said. Certain odors from fermenting fruit, for example, activate one class of neurons, and carbon dioxide activates another.

Volkan is interested in how the many types of smell neurons come to be as a fruit fly develops from egg to an adult.

Smell neurons begin as identical precursor cells, immature cells that have not yet "decided" which type of nerve cell they will become. All precursor cells have the same DNA, and how they produce one neuron type versus another was unknown.

One way to get many types of cells or proteins from the same genetic starting material is by mixing and matching different parts of one gene to produce multiple gene readouts, a phenomenon known as alternative splicing. The team's results point to another strategy, however: using the same genes in different combinations, or "combinatorial coding."

By tweaking different fly genes and counting how many neuron types were produced as the flies matured, the team identified a network of five genes that work together like coordinated control switches to guide the precursor cells' transformation to mature neurons. The genes regulate each other's activity, interacting in unique combinations to set each precursor cell on a distinct path by turning on different olfactory receptors in each cell.

The researchers found that manipulating the network had similar effects in the legs, which flies use not only to walk but also to taste. "The same basic toolkit gives rise to diverse types of neurons in completely different tissues," said Volkan, who is also a member of the Duke Institute for Brain Sciences.

Several of the network genes Volkan and her team identified have counterparts in humans and other vertebrates, which suggests the same basic mechanism could be at work in building the nervous system in other animals too.

###

Authors include Qingyun Li, Scott Barish, Sumie Okuwa and Abigail Maciejewski of Duke, Alicia Brandt and Corbin Jones of University of North Carolina-Chapel Hill and Dominik Reinhold of Clark University.

This research was supported by the National Science Foundation (1457690).

CITATION: "A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity," Qingyun Li et al. PLOS Genetics, January 2016. DOI: 10.1371/journal.pgen.1005780

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

Further reports about: flies fruit flies neurons precursor cells sense of smell

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>